Stan Errors Rejecting initial value

data {
int <lower=1> nd; //  nrow of data
real <lower=0> dose1[nd]; // dose1
real <lower=0> dose2[nd]; // dose2
int<lower=1> D;              // number of all combinations
  real<lower=0> Dose_set[D,2]; // dose amount by combination
  real y[nd]; //response EFF 0.12,.13....
  int n[nd]; //number of subject in each dose level
  real<lower=0> a1;
  real<lower=0> b1;
  real<lower=0> a2;
  real<lower=0> b2;
  real<lower=0> a3;
  real<lower=0> b3;
  real<lower=0> a4;
  real<lower=0> b4;
  real          a5;
  real<lower=0> b5;
  real<lower=0> a6;
  real<lower=0> b6;
}

parameters {
  real alpha;			// interaction parameter
  real<lower=0> Emax;		// positive
  real<lower=0> theta3;	// IC50 for drug A
  real<lower=0> theta4;	// IC50 for drug B
  real<lower=0> tau;		// positive (gamma, slope of the sigmoid)
  real<lower=0> phi;		// positive
 // real<lower=0> sigma;
}



transformed parameters{
  real sigma;
  sigma = 1 / sqrt(phi);
}

model {
  vector[nd] mu;
  vector[nd] X;
for (i in 1:nd) {
 X[i]  = (((dose1[i]/theta3)+(dose2[i]/theta4)+alpha*(dose1[i]/theta3)*(dose2[i]/theta4))^tau)/(1+((dose1[i]/theta3)+(dose2[i]/theta4)+alpha*(dose1[i]/theta3)*(dose2[i]/theta4))^tau);
    
    mu[i] = Emax * X[i];

}
  y ~ normal(mu,sigma);
    // prior
  Emax ~ gamma(a1, b1);
  theta3 ~ gamma(a2, b2);  //ic50A
  theta4 ~ gamma(a3, b3);  // IC50B
  tau ~ gamma(a4, b4);    // GAMMA SHAPE OF SIGMOID
  alpha ~ lognormal(a5,b5);  // INTERACTION

 phi ~ gamma(a6, b6);

}


generated quantities {
  real Y_mean[D]; 
  real Y_pred[D]; 
 vector[D] X2; // mean for each combination
  
  for (i in 1:D) {
    X2[i] =((((Dose_set[i,1]/theta3)+(Dose_set[i,2]/theta4)+alpha*(Dose_set[i,1]/theta3)*(Dose_set[i,2]/theta4))^tau)/
              (1+((Dose_set[i,1]/theta3)+(Dose_set[i,2]/theta4)+alpha*(Dose_set[i,1]/theta3)*(Dose_set[i,2]/theta4))^tau));
  Y_mean[i] = Emax * X2[i];
    //  predictive distribution
  Y_pred[i] = normal_rng(Y_mean[i], sigma);   
  }
}

I am getting these errors
“Rejecting initial value:
Error evaluating the log probability at the initial value.
Exception: normal_lpdf: Location parameter[1] is -nan, but must be finite! (in ‘modelc0fa23a89510_comboemaxdata’ at line 61)”

“Rejecting initial value:
Error evaluating the log probability at the initial value.
Exception: lognormal_lpdf: Random variable is -0.0436181, but must be >= 0! (in ‘modelc0fa23a89510_comboemaxdata’ at line 67)”

My initial values are:
data=list(dose1,dose2,y=EFF,n=N,D=nrow(d_ds),nd=7, Dose_set=as.matrix(d_ds),
a1=emax_m,b1=emax_v,
a2=ic50a_m,b2=ic50a_v,a3=ic50b_m,b3=ic50b_v,
a4=tau_m,b4=tau_v,
a5=alpha_m,b5=alpha_v,a6=phi_m,b6=phi_v)
dose1=c(rep(5,3),rep(10,4))

dose2=c(rep(1,3),rep(2.5,4))
Dose1=c(5,10,15,20,25,30,35)
Dose2=c(1, 2.5,5,8,10,12)
d_ds <- expand.grid(Dose1, Dose2)
EFF=c(0.120339186,0.134951636,0.137583534,0.347937291,0.328618659,0.34173274,0.832809641)
N=rep(1,7)
data=data.frame(dose1,dose2,EFF,N)
alpha_m=0.1
alpha_v=.3
ic50a_m=1.05
ic50a_v=.3
ic50b_m=1.05
ic50b_v=.3
tau_m=2.5 ###slope
tau_v=.45
emax_m=2.5 ###EMAX
emax_v=0.5
phi_m=0.0001
phi_v=0.0001

I am trying to make the priors noninformative. I really can’t figure out if there is a problem with my model or is it the initial value for lognormal that is making the difference. New to stan.
Please help. Rhat is 1<1.1
image

As I see there is some problem with the lognormal sampling.

Yes, the parameters block does not constrain alpha to be positive.

Yes,removes the error. Thanks for your help.
However the prior choices specially for log-normal is producing divergent transitions. RHat got increased. :(