Hi Angelo, here’s a brief explanation of the difference. Suppose you have a negative binomial regression with a log link:
\eta_i = a + bx_i \\
\lambda_i = \exp(\eta_i) \\
y_i \sim {\rm NegBinom}(\lambda_i, \phi)
posterior_linpred()
gives you posterior draws of \eta.posterior_linpred(transform=TRUE)
, or equivalentlyposterior_epred()
, gives you posterior draws of \lambda, that is, it does the inverse link transformation for you.posterior_predict()
gives you draws from {\rm NegBinom}(\lambda, \phi), that is it uses a NegBinom random number generator and includes the dispersion information in \phi.
What do you get if you compare the means instead of the medians?