I ran the get_sampler_params() on the fit object and here are the outputs. It seems the pathological chain 3 has very small step size and very high energy.
[[1]]
accept_stat__ stepsize__ treedepth__ n_leapfrog__ divergent__ energy__
[1,] 1 7.450581e-12 2 3 0 1.306063e+19
[2,] 0 1.001820e-02 0 1 1 1.499753e+18
[3,] 0 9.514925e-04 0 1 1 1.499753e+18
[4,] 0 4.885943e-05 0 1 1 1.499753e+18
[5,] 0 1.916193e-06 0 1 1 1.499753e+18
[6,] 0 6.717539e-08 0 1 1 1.499753e+18
[7,] 0 2.286806e-09 0 1 1 1.499753e+18
[8,] 0 7.918191e-11 0 1 1 1.499753e+18
[9,] 1 2.863701e-12 4 15 0 1.492220e+18
[10,] 1 2.583148e-12 7 127 0 5.344301e+17
[11,] 1 2.513133e-12 1 1 0 2.224569e+17
[12,] 1 2.585101e-12 2 3 0 2.215456e+17
[13,] 1 2.771415e-12 3 7 0 2.177481e+17
[14,] 1 3.064166e-12 1 1 0 2.016586e+17
[15,] 1 3.466581e-12 1 1 0 2.005466e+17
[16,] 1 3.989317e-12 1 1 0 1.991385e+17
[17,] 1 4.648851e-12 1 1 0 1.972991e+17
[18,] 1 5.466865e-12 1 1 0 1.948461e+17
[19,] 1 6.470127e-12 2 3 0 1.914051e+17
[20,] 1 7.690664e-12 1 1 0 1.745322e+17
[21,] 1 9.166097e-12 2 3 0 1.689292e+17
[22,] 1 1.094009e-11 4 15 0 1.426225e+17
[23,] 1 1.306289e-11 2 3 0 4.811179e+16
[24,] 1 1.559188e-11 1 1 0 4.346739e+16
[25,] 1 1.859224e-11 1 1 0 4.201955e+16
[26,] 1 2.213764e-11 1 1 0 4.009627e+16
[27,] 1 2.631089e-11 1 1 0 3.761618e+16
[28,] 1 3.120472e-11 1 1 0 3.453972e+16
[29,] 1 3.692251e-11 2 3 0 3.057181e+16
[30,] 1 4.357908e-11 1 1 0 1.845041e+16
[[2]]
accept_stat__ stepsize__ treedepth__ n_leapfrog__ divergent__ energy__
[1,] 0.0000000 0.0080000000 0 1 1 220443.72
[2,] 1.0000000 0.0016261601 3 7 0 214171.69
[3,] 1.0000000 0.0009514925 3 7 0 116666.99
[4,] 1.0000000 0.0007017947 5 31 0 78637.18
[5,] 1.0000000 0.0005809276 4 15 0 33377.93
[6,] 1.0000000 0.0005148232 4 15 0 31327.58
[7,] 1.0000000 0.0004766819 4 15 0 27454.79
[8,] 1.0000000 0.0004546284 4 15 0 25573.87
[9,] 1.0000000 0.0004426525 5 31 0 25263.59
[10,] 1.0000000 0.0004374081 5 31 0 24022.68
[11,] 0.9999997 0.0004368918 5 31 0 23087.26
[12,] 1.0000000 0.0004398329 5 31 0 20927.98
[13,] 1.0000000 0.0004453883 6 63 0 19680.25
[14,] 0.9998862 0.0004529745 6 63 0 18248.85
[15,] 0.9999979 0.0004620113 7 127 0 16891.33
[16,] 0.9992086 0.0004725150 8 255 0 14261.29
[17,] 0.9914343 0.0004829221 11 2047 0 12756.67
[18,] 0.9992218 0.0004825939 12 4095 0 11649.08
[19,] 0.9862694 0.0004944094 13 8191 0 11048.24
[20,] 0.9954384 0.0004874687 13 8191 0 10491.81
[21,] 0.9990575 0.0004944489 13 8191 0 10249.38
[22,] 0.9948989 0.0005071214 13 8191 0 10220.08
[23,] 0.9974357 0.0005138497 13 8191 0 10171.28
[24,] 0.9962128 0.0005246038 13 8191 0 10163.10
[25,] 0.9955914 0.0005336683 13 8191 0 10138.83
[26,] 0.9997636 0.0005418895 13 8191 0 10128.69
[27,] 0.9999868 0.0005567270 13 8191 0 10086.87
[28,] 0.9997677 0.0005721352 13 8191 0 10104.65
[29,] 0.9973125 0.0005873873 13 8191 0 10112.70
[30,] 0.9972249 0.0005987351 13 8191 0 10106.31
[[3]]
accept_stat__ stepsize__ treedepth__ n_leapfrog__ divergent__ energy__
[1,] 1 1.292470e-29 1 1 0 5.797633e+54
[2,] 0 1.001820e-02 0 1 1 2.297321e+54
[3,] 0 9.514925e-04 0 1 1 2.297321e+54
[4,] 0 4.885943e-05 0 1 1 2.297321e+54
[5,] 0 1.916193e-06 0 1 1 2.297321e+54
[6,] 0 6.717539e-08 0 1 1 2.297321e+54
[7,] 0 2.286806e-09 0 1 1 2.297321e+54
[8,] 0 7.918191e-11 0 1 1 2.297321e+54
[9,] 0 2.863701e-12 0 1 1 2.297321e+54
[10,] 0 1.098229e-13 0 1 1 2.297321e+54
[11,] 0 4.502938e-15 0 1 1 2.297321e+54
[12,] 0 1.981857e-16 0 1 1 2.297321e+54
[13,] 0 9.375834e-18 0 1 1 2.297321e+54
[14,] 0 4.766257e-19 0 1 1 2.297321e+54
[15,] 0 2.600133e-20 0 1 1 2.297321e+54
[16,] 0 1.519193e-21 0 1 1 2.297321e+54
[17,] 0 9.484620e-23 0 1 1 2.297321e+54
[18,] 0 6.311388e-24 0 1 1 2.297321e+54
[19,] 0 4.464805e-25 0 1 1 2.297321e+54
[20,] 0 3.349092e-26 0 1 1 2.297321e+54
[21,] 0 2.657007e-27 0 1 1 2.297321e+54
[22,] 0 2.223961e-28 0 1 1 2.297321e+54
[23,] 1 1.959293e-29 1 1 0 1.973148e+54
[24,] 1 3.316111e-29 2 3 0 8.024776e+53
[25,] 1 5.596571e-29 1 1 0 2.762145e+53
[26,] 1 9.404855e-29 1 1 0 9.471475e+52
[27,] 1 1.571930e-28 1 1 0 3.281367e+52
[28,] 1 2.610904e-28 2 3 0 1.150290e+52
[29,] 1 4.306664e-28 1 1 0 4.086772e+51
[30,] 1 7.051335e-28 7 127 0 1.473304e+51
[[4]]
accept_stat__ stepsize__ treedepth__ n_leapfrog__ divergent__ energy__
[1,] 1 1.907349e-09 1 1 0 4.367587e+14
[2,] 0 1.001820e-02 0 1 1 2.168011e+13
[3,] 0 9.514925e-04 0 1 1 2.168011e+13
[4,] 0 4.885943e-05 0 1 1 2.168011e+13
[5,] 0 1.916193e-06 0 1 1 2.168011e+13
[6,] 0 6.717539e-08 0 1 1 2.168011e+13
[7,] 1 2.286806e-09 2 3 0 2.103727e+13
[8,] 1 1.780050e-09 2 3 0 1.049278e+13
[9,] 1 1.536878e-09 2 3 0 8.392762e+12
[10,] 1 1.429097e-09 1 1 0 7.337860e+12
[11,] 1 1.402603e-09 2 3 0 7.143783e+12
[12,] 1 1.432455e-09 1 1 0 6.490294e+12
[13,] 1 1.506772e-09 1 1 0 6.341383e+12
[14,] 1 1.620191e-09 2 3 0 6.177983e+12
[15,] 1 1.770938e-09 6 63 0 5.509423e+12
[16,] 1 1.959400e-09 1 1 0 2.176023e+12
[17,] 1 2.187394e-09 1 1 0 2.144719e+12
[18,] 1 2.457771e-09 3 7 0 2.102302e+12
[19,] 1 2.774181e-09 2 3 0 1.508265e+12
[20,] 1 3.140953e-09 1 1 0 1.393930e+12
[21,] 1 3.563005e-09 1 1 0 1.361079e+12
[22,] 1 4.045802e-09 3 7 0 1.314966e+12
[23,] 1 4.595326e-09 4 15 0 7.621139e+11
[24,] 1 5.218050e-09 1 1 0 3.220273e+11
[25,] 1 5.920936e-09 2 3 0 3.170939e+11
[26,] 1 6.711416e-09 1 1 0 2.943347e+11
[27,] 1 7.597392e-09 1 1 0 2.877424e+11
[28,] 1 8.587230e-09 3 7 0 2.785319e+11
[29,] 1 9.689752e-09 3 7 0 1.665425e+11
[30,] 1 1.091423e-08 3 7 0 1.120353e+11
And also I ran get_adaptation_info(), it is apparent that chain 3 has different behavior than the other chains.
[1] "# Adaptation terminated\n# Step size = 0.0173449\n# Diagonal elements of inverse mass matrix:\n# 0.12797, 0.207466, 0.0583861, 0.262218, 0.00274245, 0.0397579, 0.00743187, 0.0350643, 0.000489024, 0.000437928, 0.022354, 0.0277263, 0.0339336, 0.0482893, 0.230905, 0.0513686, 0.0457979, 0.798876, 0.184697, 1.32798, 0.0661912, 0.0772531, 0.195713, 0.0933529, 0.217419, 0.126162, 0.0941312, 0.223627, 0.0877216, 0.128143, 0.421813, 0.0891986, 0.0764124, 0.182436, 0.0938813, 0.0874292, 0.113718, 0.072941, 0.144466, 0.08523, 1.36977, 0.161513, 0.117778, 0.0814578, 0.0813858, 0.0887076, 0.107297, 0.0942244, 0.262298, 0.0753033, 0.293906, 0.229777, 0.117618, 0.126842, 0.20437, 0.263833, 0.276794, 0.214986, 0.153346, 0.151326, 0.272189, 0.149247, 0.0896074, 0.294099, 0.341472, 0.22304, 0.517192, 0.265631, 0.285168, 0.177408, 0.0806569, 0.0603476, 0.124002, 0.166297, 0.109847, 0.119436, 0.329544, 0.212882, 0.282552, 0.245942, 0.13614, 0.114498, 0.38946, 0.148072, 0.111022, 0.107911, 0.109772, 0... <truncated>
[[2]]
[1] "# Adaptation terminated\n# Step size = 0.0209994\n# Diagonal elements of inverse mass matrix:\n# 0.115718, 0.205785, 0.0537171, 0.244166, 0.00251715, 0.030784, 0.0075802, 0.0350458, 0.000519418, 0.000411778, 0.0228099, 0.0292809, 0.0376576, 0.0442331, 0.153228, 0.0532738, 0.0496571, 1.16481, 0.158387, 1.20273, 0.0565523, 0.0919289, 0.183975, 0.0947284, 0.204828, 0.138392, 0.0980136, 0.253032, 0.0799498, 0.171863, 0.413476, 0.103841, 0.0791864, 0.158471, 0.0881689, 0.0898936, 0.0998266, 0.0648375, 0.131384, 0.0835116, 1.0458, 0.172109, 0.113653, 0.0843148, 0.0817037, 0.0844458, 0.106355, 0.090414, 0.25457, 0.0675009, 0.242018, 0.177575, 0.0974645, 0.135264, 0.262727, 0.219498, 0.294108, 0.18109, 0.134527, 0.170718, 0.252306, 0.215155, 0.0913311, 0.327824, 0.38818, 0.268098, 0.365373, 0.296492, 0.323953, 0.168218, 0.0737963, 0.0632496, 0.1028, 0.154365, 0.102654, 0.124928, 0.321451, 0.235798, 0.274926, 0.282784, 0.135013, 0.130868, 0.29872, 0.145211, 0.11884, 0.118941, 0.111523, 0.4... <truncated>
[[3]]
[1] "# Adaptation terminated\n# Step size = 4.83033e-11\n# Diagonal elements of inverse mass matrix:\n# 9.90099e-06, 9.90101e-06, 9.90099e-06, 9.90099e-06, 0.00234474, 9.90099e-06, 9.90099e-06, 9.90099e-06, 9.90099e-06, 9.90099e-06, 9.90099e-06, 9.90099e-06, 9.90099e-06, 9.90099e-06, 9.91011e-06, 9.90099e-06, 9.90099e-06, 9.90099e-06, 9.90099e-06, 9.90099e-06, 9.90099e-06, 9.90099e-06, 9.90099e-06, 9.90099e-06, 9.90099e-06, 9.90099e-06, 9.90099e-06, 9.90099e-06, 9.90099e-06, 9.90099e-06, 9.90099e-06, 9.90099e-06, 9.90099e-06, 9.90099e-06, 9.90099e-06, 9.90099e-06, 9.90099e-06, 9.90099e-06, 9.90099e-06, 9.90099e-06, 9.90099e-06, 9.90099e-06, 9.90099e-06, 9.90099e-06, 9.90099e-06, 9.90099e-06, 9.90099e-06, 9.90099e-06, 9.90099e-06, 9.90099e-06, 9.90099e-06, 9.90099e-06, 9.90099e-06, 9.90099e-06, 9.90099e-06, 9.90099e-06, 9.90099e-06, 9.90099e-06, 9.90099e-06, 9.90099e-06, 9.90099e-06, 9.90099e-06, 9.90099e-06, 9.90099e-06, 9.90099e-06, 9.90099e-06, 9.90099e-06, 9.90099e-06, 9.90099e-06, ... <truncated>
[[4]]
[1] "# Adaptation terminated\n# Step size = 0.0239955\n# Diagonal elements of inverse mass matrix:\n# 0.11274, 0.186193, 0.0549136, 0.262421, 0.00312959, 0.0360401, 0.00655043, 0.0281247, 0.000581819, 0.000432995, 0.0234177, 0.0286032, 0.036863, 0.0515373, 0.353247, 0.0465309, 0.0419241, 1.1369, 0.136503, 1.20595, 0.0570064, 0.08132, 0.208696, 0.0785333, 0.175273, 0.125332, 0.0889874, 0.315583, 0.0905617, 0.143229, 0.448736, 0.10262, 0.0840417, 0.212294, 0.0953821, 0.0848, 0.102528, 0.0618765, 0.12662, 0.0817934, 1.14671, 0.196956, 0.133612, 0.0856085, 0.0832608, 0.0957021, 0.104368, 0.0980542, 0.265415, 0.0589645, 0.288139, 0.22046, 0.132964, 0.129785, 0.318438, 0.213677, 0.299509, 0.213899, 0.12354, 0.174327, 0.279038, 0.173186, 0.0745602, 0.327956, 0.290788, 0.230392, 0.37371, 0.292577, 0.305679, 0.168716, 0.072329, 0.0526341, 0.102998, 0.152814, 0.0998614, 0.116766, 0.373235, 0.231323, 0.262656, 0.242449, 0.135874, 0.127976, 0.276872, 0.156424, 0.129711, 0.11855, 0.116443, 0.417212... <truncated>
What does this imply and is there any parameter I can change that can remedy this?
Thanks!