Want to confirm my data is in the correct structure for brms regression given output

Hi Stan Forum, It is my first time here, and I don’t write code in Stan, just code in brms, but I will write ```Stan before my code chunks

I am wondering if you can just tell me how to reformat my data so I can do the analysis that the reviewer asked me to do–my friend thinks the reviewer suggests that I am supposed to be getting a coefficient for each question from the brms output and I am not yet getting that.
I attach my data environment here along with an abbreviated version of code I have developed for you to run.
To review, the reviewer suggested the following:"An alternative approach to investigate the effects on both general attitudes and specific components would be to use multilevel linear modeling with items nested within participants, including random effects of the term. In R lme4 notation, the formula for this model would look like: response ~ undocumented + (1 | participant) + (undocumented | item). Fixed effects would indicate the general trend, while random effects estimates would show how these effects differ depending on the item used. "
Model seems to match their description.The difficulty for me as always is getting my data into a format that allows me to do this sort of analysis. my friend earlier suggested the following:

First read in the attached mydata2.csv file into R as mydata2
Then:

  1. Step one: recode each item-variable so that it goes in the same (e.g. pro immigrant direction) and has the same number of levels:#this is for the coding where don’t know is 0
mydata2$immfavor_proimm<-revalue(mydata2$immfavor, c("-2"="5", "-1"="4", "0"="3", "1"="2", "2"="1"))
mydata2$immrights_proimm<-revalue(mydata2$immrights,  c("-2"="5", "-1"="4", "0"="3", "1"="2", "2"="1"))
mydata2$immlang_proimm<-revalue(mydata2$immlang,  c("-2"="5", "-1"="4", "0"="3", "1"="2", "2"="1"))
mydata2$immcrime_proimm<-revalue(mydata2$immcrime,  c("-2"="5", "-1"="4", "0"="3", "1"="2", "2"="1"))
mydata2$immjob_proimm<-revalue(mydata2$immjob,  c("-2"="5", "-1"="4", "0"="3", "1"="2", "2"="1"))
mydata2$immunit_proimm<-revalue(mydata2$immunit, c("2"="5", "1"="4", "0"="3", "-1"="2", "-2"="1"))
mydata2$letin_proimm<-revalue(mydata2$letin, c("2"="5", "1"="4", "0"="3", "-1"="2", "-2"="1"))
mydata2$immideas_proimm<-revalue(mydata2$immideas, c("2"="5", "1"="4", "0"="3", "-1"="2", "-2"="1"))
mydata2$immgrowth_proimm<-revalue(mydata2$immgrowth, c("2"="5", "1"="4", "0"="3", "-1"="2", "-2"="1"))
  1. Step two: make sure all the variables are ordered in the right direction:
mydata2$letin_proimm<-ordered(mydata2$letin_proimm, levels = c("1", "2", "3", "4", "5"))
mydata2$immrights_proimm<-ordered(mydata2$immrights_proimm, levels = c("1", "2", "3", "4", "5"))
mydata2$immfavor_proimm<-ordered(mydata2$immrights_proimm, levels = c("1", "2", "3", "4", "5"))
mydata2$immlang_proimm<-ordered(mydata2$immlang_proimm, levels = c("1", "2", "3", "4", "5"))
mydata2$immcrime_proimm<-ordered(mydata2$immcrime_proimm, levels = c("1", "2", "3", "4", "5"))
mydata2$immideas_proimm<-ordered(mydata2$immideas_proimm, levels = c("1", "2", "3", "4", "5"))
mydata2$immjob_proimm<-ordered(mydata2$immjob_proimm, levels = c("1", "2", "3", "4", "5"))
mydata2$immgrowth_proimm<-ordered(mydata2$immgrowth_proimm, levels = c("1", "2", "3", "4", "5"))
mydata2$immunit_proimm<-ordered(mydata2$immunit_proimm, levels = c("1", "2", "3", "4", "5"))
  1. step three: restructure the data into long format where each row is a response to an individual question/item for a particular participant (with individual questions nested within each participant):
library(tidyr)
responses.df <- mydata2%>%
    select(turkID = turkID,
           undocumented,
           letin_proimm,
           immrights_proimm,
           immfavor_proimm,
           immlang_proimm,
           immcrime_proimm,
           immideas_proimm,
           immjob_proimm,
           immgrowth_proimm,
           immunit_proimm, female, hispanic, white, age, northeast, south, midwest, lnincome, educ, born_usa, democrat, republican, media, polview, auth, ethnocentrism)%>%
    distinct(turkID, .keep_all = TRUE)%>%#Headsup don't forget the full inclusion criteria in the writeup.
    pivot_longer(c(letin_proimm, immrights_proimm, immfavor_proimm, immlang_proimm, immcrime_proimm, immideas_proimm, immjob_proimm, immgrowth_proimm, immunit_proimm),
                 names_to = "question")%>%
    mutate(ppnt_response = factor(value,
                                    ordered = TRUE,
                                    levels = c(1,2,3,4,5)) )#probably this is the default anyway but nice to be explicit.
responses.df$value<-as.factor(responses.df$value)

  1. run the model with the following code–I believe this is correct if participant would be MTurkID and “item” is supposed to be question–but the output provided only gives the output alone which contains only one coefficient “undocumented” which I believe its composite association on all variables:
fit13<- brm(ppnt_response ~
             undocumented + (1 | turkID) + (undocumented | question),
           data = responses.df, init="0",
           family = cumulative("probit"), chains = 10, cores = 2,
           control = list(adapt_delta = 0.99))

output: Family: cumulative 
  Links: mu = probit; disc = identity 
Formula: value ~ undocumented + undocumented + (1 | turkID) + (undocumented | question) 
   Data: responses.df (Number of observations: 3582) 
  Draws: 1 chains, each with iter = 2000; warmup = 1000; thin = 1;
         total post-warmup draws = 1000

Group-Level Effects: 
~question (Number of levels: 9) 
                            Estimate Est.Error l-95% CI u-95% CI Rhat
sd(Intercept)                   0.38      0.13     0.21     0.74 1.00
sd(undocumented)                0.18      0.08     0.04     0.39 1.00
cor(Intercept,undocumented)    -0.14      0.38    -0.77     0.65 1.00
                            Bulk_ESS Tail_ESS
sd(Intercept)                    351      696
sd(undocumented)                 290      414
cor(Intercept,undocumented)     1126      726

~turkID (Number of levels: 398) 
              Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
sd(Intercept)     0.68      0.03     0.62     0.74 1.00      456      558

Population-Level Effects: 
             Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
Intercept[1]    -1.14      0.15    -1.45    -0.83 1.00      404      514
Intercept[2]    -0.42      0.15    -0.73    -0.12 1.00      400      469
Intercept[3]    -0.12      0.15    -0.43     0.18 1.00      400      435
Intercept[4]     0.83      0.15     0.51     1.13 1.00      411      503
undocumented    -0.08      0.10    -0.29     0.12 1.00      581      703

Family Specific Parameters: 
     Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
disc     1.00      0.00     1.00     1.00   NA       NA       NA

Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).

Is this not what the reviewer asked me to do? I thought that what question here is the equivalent of what the reviewer calls item and ppnt_response is hte same as what the reviewer called response, but my colleague seems to suggest i should get a coefficient for every item in the output. However, that is not what I see here.
if I need to create other variables from the data by coding to what the reviewer suggests, let me know how I do that. What I see from the output is not an estimate for each of the 9 items/questions but only a general estimate for the undocumented variable.If that is what I should expect from this model and everything is fine, then I could move ahead with providing you results and my results based on this minimal output.
Thank you!
Jacob
datax.csv (73.8 KB)
Reproducible example of data prepration and analysis for BRMS.R (3.2 KB)

Welcome, @Jacob_Richard_Thomas, and thank you for providing resources in your question that will make it easier for the community to help!

1) How to translate the reviewer’s suggestion into brms syntax (+ any necessary data recoding)

I’m not an expert in this area, but the place I would start are @Solomon’s writings on these models, including a brms “recoding” of a basic cumulative probit model from Doing Bayesian Data Analysis and a follow-up blog post that unpacks more complex elaborations that look more like what you want to use.

It’s not clear to me why the reviewer says,

but then proceeds to give an lme4-style model formula without items nested within participants:

It seems like something is missing or a typo has been made. Others with expertise on the forum might be able to correctly spot it, or you could consider asking the reviewer for clarification via the editor.

2) How to extract the item-specific random intercepts and slopes

Here I can offer more direct help. The summary output table for a brmsfit object won’t show the slopes and intercepts summaries for each level of the group-level (“random effect”) terms. Instead, you’ll see sd(Intercept) and similar terms under the Group-Level Effects: headings. These are the standard deviations among each group (i.e., question or person).

I think you want to see the estimates/posterior distributions for each of these groups. That will tell you the effect of each question, how undocumented impacts the effect of each question, and the differences among people responding. You can see a more granular view of summary(fit13) that pulls out summary estimates for the group-level effects using ranef(fit13).

> ranef(fit13)
$question
, , Intercept

                    Estimate Est.Error
immcrime_proimm   0.05993917 0.1536151
immfavor_proimm  -0.03666122 0.1510792
immgrowth_proimm -0.05571383 0.1512908
immideas_proimm   0.38248635 0.1525529
immjob_proimm     0.27862128 0.1549286
immlang_proimm    0.27753051 0.1520281
immrights_proimm -0.03637593 0.1517003
immunit_proimm   -0.33907326 0.1550383
letin_proimm     -0.52451566 0.1523668
                        Q2.5       Q97.5
immcrime_proimm  -0.24094627  0.37006485
immfavor_proimm  -0.33349147  0.26102922
immgrowth_proimm -0.35074575  0.25372635
immideas_proimm   0.08475944  0.69325640
immjob_proimm    -0.02071322  0.59515912
immlang_proimm   -0.02023435  0.58587575
immrights_proimm -0.33705357  0.27245965
immunit_proimm   -0.64750718 -0.03913366
letin_proimm     -0.82953900 -0.22384713

, , undocumented

                    Estimate Est.Error
immcrime_proimm  -0.11902737 0.1127292
immfavor_proimm  -0.04257315 0.1039264
immgrowth_proimm  0.08113268 0.1067476
immideas_proimm   0.07551285 0.1117620
immjob_proimm    -0.13751275 0.1187651
immlang_proimm    0.04853609 0.1086151
immrights_proimm -0.04346779 0.1054498
immunit_proimm    0.20934671 0.1264697
letin_proimm     -0.07107657 0.1131264
                         Q2.5      Q97.5
immcrime_proimm  -0.362290850 0.07403659
immfavor_proimm  -0.257397625 0.16221480
immgrowth_proimm -0.113613400 0.31477790
immideas_proimm  -0.129205150 0.31260805
immjob_proimm    -0.389393325 0.06724027
immlang_proimm   -0.156766225 0.28019660
immrights_proimm -0.263013050 0.15920500
immunit_proimm   -0.004393781 0.48018745
letin_proimm     -0.310093475 0.13647187


$turkID
, , Intercept

                          Estimate Est.Error
A074332538R4YYDPXNF01  0.371080844 0.3185510
A11EL5LWS2L1HX         0.777962631 0.3447570
A11FGDHNWN992         -0.101970878 0.3148764
A11W7R2O4RQSSS         0.053732996 0.3227204
A12HWPFXQPITHD        -0.451984143 0.3328879
A136K9Y7E4C3G         -0.356130051 0.3250725
A143J3H0S644SM        -1.196870099 0.3499684
A149ROBL26JWPJ        -0.612378394 0.3133993
A14JGIN4ZXXLGD        -0.349630320 0.3104822
A14OPFM8OFA4WF        -0.547000772 0.3223195
A14WLAP6TCEKO0         0.162021582 0.3175215
A15PHPJA7AWCS3         1.038265935 0.3521565
A15SUPIZ05ZFCD         0.390561793 0.3249729
A16HSMUJ7C7QA7        -0.668446792 0.3150295
A16OH8XXYY0AAS         0.431366339 0.3173261
A16QR0D9MVFMS7        -0.322289247 0.3310838
A16UI9RHNATNUB         0.088464194 0.3080496
A17D6BK59S31BM        -0.228463182 0.3087004
A17QHU5Q0FS3GW        -0.011715514 0.3261253
A183WYXN12P2TJ        -0.006651259 0.3147305
A188SHJZPHE8BA         0.590514240 0.3286264
A18E16UFE351U6         0.893589652 0.3361299
A18SXC3JEN1O0U        -0.730738985 0.3288425
A18VIO909RWY6D        -0.164100245 0.3157291
A19OCD2Q0K2U6M        -0.427042383 0.3125953
A1A9402JQBA2AF        -0.427542838 0.3148378
A1AFOBARMIFUSW         0.630946571 0.3323570
A1BBJJHGM0ADN7        -1.344016743 0.3574439
A1BBZ9UGENEQZB        -1.049047232 0.3314733
A1BM57TUNAQIXM         0.120944139 0.3066834
A1C7XI68SED8JE        -0.014661598 0.3125807
A1CPLS7BLMNMZ7        -0.114889846 0.3070321
A1CY7IOJ9YH136         0.832283125 0.3291138
A1D9ZWU1M46SAF        -0.324944865 0.3165875
A1DD22MXYY0AWP         0.776159932 0.3432504
A1DK0O56F7GXKB         0.129594788 0.3143252
A1DM0HNMZAC1E8        -0.115317946 0.3127427
A1DNJ17PE2RYJZ         0.378227282 0.3181517
A1E1PEJCLK9OAJ        -0.607655481 0.3223207
A1F1TBDHPYAAXT        -1.015316582 0.3303558
A1F2WHEEM0QQ1B         0.103858698 0.3168160
A1F9W03R8ZMDO7        -0.086478968 0.3164358
A1FHKK0RU69RU         -0.268056799 0.3120751
A1FNNL4YJGBU8U         0.313356330 0.3220467
A1FS8SBR4SDWYG        -0.107955329 0.3130690
A1G187YBG0DVMQ         0.527156362 0.3227684
A1GCTKOPKUTW3G         0.228467075 0.3129878
A1H5Q9HRH4RPZU        -0.409764550 0.3199550
A1H72Y9Z5NJXDS         0.253941772 0.3142313
A1HAOXJVRYT43K         0.269359112 0.3136068
A1HGAHZSM14YTV        -1.021650843 0.3408418
A1HNR6OIRFCEHS        -0.188474726 0.3041904
A1HQ94T9O4AV39        -0.233130093 0.3191831
A1ICWR931J4062         0.039744952 0.3200409
A1IEAOCJNSPVRX         1.057639292 0.3602266
A1IUX91LA3UUQ8         0.191946104 0.3145235
A1J8TVICSRC70W        -0.026101365 0.3064094
A1JIIKZ0LB73GZ        -0.150185620 0.3143754
A1JJYY622DGE5L         0.301535337 0.3188375
A1K4KR1GQYCIWA        -0.470796561 0.3189899
A1L3937MY09J3I         0.321948012 0.3164032
A1LSNEWP9PZRV2         0.570181054 0.3405709
A1MYSQNDCRU54G        -0.562477567 0.3299560
A1NLJ1L4VCQYV2         0.070216265 0.3164079
A1O0BGHFTMPQM0         0.853599406 0.3516755
A1O67YS3DU0ZHX         0.278733581 0.3190699
A1OPGPTQJ48XOY         0.779802694 0.3436601
A1P6OXEJ86HQRM         0.586737173 0.3267458
A1PB9RGHUXNVP6        -0.599718212 0.3177121
A1PEUJ23G02GUZ         0.650541308 0.3261558
A1PP1FS377QA79         0.488394497 0.3248908
A1PUHCEBSOWETV         0.093437253 0.3161576
A1R1F51OC1NGAG        -0.057320681 0.3100702
A1S96IXZ4IV0OU        -0.220295297 0.3073838
A1SNC8UL8YFRH5         1.064090394 0.3554730
A1SP3GBRZKMWZJ        -0.274510983 0.3080100
A1SUNOPZGPARCY         0.327773459 0.3150535
A1T9VHNIS0BETZ         0.034825969 0.3136161
A1TLNLB9D87H6          0.679675981 0.3323200
A1TLQ6BTDQX7US         0.626945187 0.3288096
A1UBV2NP7OVDVV         0.300162231 0.3156919
A1UY3Q0D2OCZJY        -0.320942698 0.3114547
A1UZL0ATEWD4G9        -0.673941688 0.3219800
A1VVR9MA1P9HWJ         1.206688166 0.3707827
A1VZFQTTLOYIY0         1.007799098 0.3530522
A1VZSFHTU51JP0         0.501672398 0.3212467
A1WJU1IQ3UTRC6        -0.396144012 0.3240157
A1XH62A94I3U61         0.725774271 0.3350555
A1XVEKS9O73ERE        -1.026991114 0.3369616
A1Y6VW621TEYXN        -0.503820884 0.3149024
A1Y9VA9FKJLS5K         0.080400170 0.3223065
A1YI1H05AQ3ING        -0.892732747 0.3371722
A1YSYI926BBOHW         1.166322342 0.3752571
A1Z8AOIDT5IV43        -0.313634724 0.3103717
A1ZB2NY0F9QNP0         0.431147321 0.3223537
A1ZD8RU6YB0VEU         0.156436002 0.3145734
A1ZR710QUGFM2Z         0.515142739 0.3275933
A1ZT30BGR3266K         0.300852287 0.3149163
A1ZVCHY6HYVHGA         0.131906383 0.3089206
A2043AJAJ5TSAS        -0.006506330 0.3181988
A207IHY6GERCFO        -0.454995724 0.3247502
A20N1NK5X5S88F        -0.954635209 0.3365634
A20NITCOBY4775         1.209164679 0.3695776
A20RVM3V1A3DKX         0.043433170 0.3156690
A20SXG1DHDIDI7        -0.390080224 0.3228134
A21KF567E8ZCLO         0.399246738 0.3204856
A21UA6O7ZFAIQJ         0.139462549 0.3128448
A221JJK7P6K22W        -0.571541915 0.3185789
A22AHPN2HZHFSV        -0.020108298 0.3154074
A22CN9X0JP1HM4         0.523526998 0.3214283
A22IIMLQ7K4B3M         0.120710644 0.3277848
A23K7MLCDZPV0D         0.482744053 0.3389817
A2482SLAY120J2        -1.028848940 0.3363425
A248LF7KKHXZ14         0.160856286 0.3182770
A24O2DYQRAJUXN        -0.043413090 0.3189390
A2541C8MY0BYV3         0.275419999 0.3160092
A25R2OI9L2Q1OW        -1.103763189 0.3602238
A266LNUJOVKCDS        -0.132681565 0.3057686
A26M997VYVK0E6         0.613526792 0.3270160
A26NGLGGFTATVN        -0.521369251 0.3145018
A26WJPE2RS98NM         0.176501403 0.3054157
A272X64FOZFYLB         0.434881521 0.3261687
A273EH17NSJRH0        -1.300510937 0.3767542
A279YSE7NB16M0         0.768702124 0.3308666
A27SMEOPKV84VI         0.169408048 0.3129353
A28RGK00V59HVE        -0.180819069 0.3104163
A297OTX4PW0XS3        -0.634010615 0.3190249
A29AKJXQ248KNK        -0.776997162 0.3202077
A29Y6CQRJVXGIQ        -0.192817902 0.3168459
A2AGQGMZVSZVUJ        -0.417657624 0.3219867
A2AJ5QFNC9KF43         0.304151482 0.3143866
A2AYD8G2NV0RNQ         0.300210710 0.3174468
A2B227N1NQYS56         0.781679465 0.3469109
A2B4GWF7MF7AOB        -0.463380214 0.3166301
A2B7SPYBPF7H8I        -0.917911866 0.3481855
A2B95Y9QQ49U8T        -0.277292643 0.3087803
A2BHHEWR9PRDX8        -0.437699325 0.3169259
A2BW6WD7LZ9EGV         0.768188685 0.3519023
A2C08Y1SWYN7IN        -0.210317825 0.3123909
A2C6HMH2FDM2CI        -0.575294672 0.3276395
A2CISHIOILFDHN         1.163011548 0.3717036
A2CJYS92WX7HN6        -0.907864706 0.3445850
A2CK0OXMPOR9LE        -0.002854115 0.3123109
A2CWNRI11XJ7WX         0.456927738 0.3326601
A2DNLHS1RSTF5R        -0.213044768 0.3033579
A2DVV59R1CQU6T         0.824622287 0.3340141
A2EI075XZT9Y2S        -0.308617073 0.3160673
A2EKR2ZFO10VMV         0.729345397 0.3328372
A2EPBSY0VPI38S        -0.315706854 0.3133156
A2ESE3IBTNAEB7        -1.303931917 0.3574427
A2ETY1O927Z1IF         0.523546177 0.3410070
A2FIMENJ9UMN7M        -0.140450801 0.3064121
A2FXD55FJV1RSV         0.598480068 0.3327558
A2G7N0X0PNX0EE         0.649361016 0.3238967
A2GAVM7Q923ZY1         0.023401059 0.3120932
A2GJYB46FWIB5Q        -0.189685410 0.3160150
A2GUS23FYGLPGW        -0.307792741 0.3073193
A2GV9WSNSPX53          0.110584326 0.3172131
A2H6K1XIK4LY7O        -0.306822499 0.3212096
A2HA7R3TR3TR1A        -0.132749867 0.3141777
A2HSCKH5NKN5LP        -0.358239572 0.3172893
A2HWV497VIPO4I        -0.090531331 0.3232485
A2I960JYUZ8KAV         1.030305742 0.3521737
A2IE9322Z6HYC7         0.297284054 0.3270950
A2INXY39KBM92F         0.764656461 0.3417094
A2IOCN8EW1E3VE        -0.128016155 0.3239452
A2IVGLOBFOT67M         0.359114302 0.3063282
A2JCHN90PRUWDH         0.515045893 0.3274330
A2JOHICL072IY3        -1.302802221 0.3630228
A2JSIDRTDGDC7T         0.144932719 0.3097970
A2K53OHEY92410        -0.166591783 0.3070824
A2LMQ4497NMK3S         0.784010704 0.3531967
A2LPP288NK76W4         0.479417754 0.3249392
A2MKXI4KCRRI7Y        -0.672976150 0.3360432
A2NBBQ3DKW5MV3        -0.476643135 0.3087610
A2NEFRREWF33YP         0.379618388 0.3228569
A2NGMLBFZ3YQP5         0.825451451 0.3447888
A2NHY01ZTYMYX4         0.135770534 0.3145815
A2NJ6AR78O07FD        -1.210491940 0.3532507
A2O7LNRIBPIHAF        -0.263687763 0.3066609
A2O8L681OIZGPV        -0.214281970 0.3313759
A2P8V5SKYLL5I4         0.299609977 0.3209902
A2PMT4061B1NDP         0.822297367 0.3383670
A2PPD1LPCLF7B5        -0.286977963 0.3065652
A2PXJTMWGUE5DC        -0.677915781 0.3250161
A2QIBANJO8H4NJ        -0.354304776 0.3115580
A2QWTQ4I70BRWO        -0.732232547 0.3142705
A2R89RXGEVG05I        -0.912004079 0.3383102
A2RANGOPK67HX9        -0.469868426 0.3249136
A2RXH2WQVVTAPY        -0.221513840 0.3107153
A2S75O867RJG0I        -0.303231792 0.3192599
A2SAPY77TLB1KA        -0.272784744 0.3102184
A2SD7GN80U31GW         0.692930207 0.3351833
A2SO6K35NMGBB7        -0.929399057 0.3237148
A2TD4A59NSRLBF        -0.519083407 0.3089873
A2TLN8489YGY81         0.387351932 0.3292939
A2TUUIV61CR0C7         0.290565200 0.3137286
A2UX7ZJEGGU5           1.207889769 0.3734893
A2V27A9GZA1NR2        -1.039392192 0.3453062
A2VFEDAK5C1E1O         0.573560080 0.3259538
A2VQ1WGHLLLNJ1        -0.131004050 0.3022362
A2VRDE2FHCBMF8         0.315192808 0.3211786
A2VURQMBDXLUCC         0.840809686 0.3461542
A2VXEPC4KG1CWU         1.002168435 0.3456470
A2W8ZV9DQWVHJK         0.854884255 0.3458028
A2WEEHSZ6LRPIQ        -0.340188332 0.3061166
A2WWYVKGZZXBOB        -1.273361063 0.3518663
A2WYCY1FMQOD5F         0.234057599 0.3103357
A2X7705RU1QQYB        -0.409722922 0.3064182
A2XQ3CFB5HT2ZQ         0.394257468 0.3312906
A2YAYHZYI7M3HD         0.133383160 0.3075076
A2YD8L5EPVCZBL        -0.231870122 0.3016654
A2YGAEODJ5SSF6        -0.120683103 0.3101721
A2YGOORS5N9RW8        -0.226787227 0.3065637
A2YHOJLEZR8663        -0.350444224 0.3236425
A2YKYAZYVWOXBO        -1.207926119 0.3540222
A2YOVBJ9EXAI8W        -0.536726381 0.3143370
A2YWSSQEXXCRGK         0.400858665 0.3103519
A2YYF6QXHYRN88        -0.007355453 0.3375939
A2Z7SWO6HS5OOI        -1.018577547 0.3364542
A2ZBDD2PGJ262Y         0.661211638 0.3307785
A2ZD06QDBVKF59        -0.430019543 0.3131187
A2ZGRB5DEGOG9C         0.353312122 0.3218992
A2ZQCHONMAJZF          1.059009918 0.3580099
A30MP4LXV4MIFD        -0.005254824 0.3153144
A30NWLRPW1XUSH         0.348912190 0.3159828
A31681CCEVDIH3         0.565150903 0.3322269
A31908QXT8U4A0        -1.305264385 0.3744998
A31BFQ3V5CLBGH         0.191103705 0.3102605
A31CQ2BUTMPXCT        -0.563320036 0.3116789
A31Z13BGZDNRN9        -1.084254139 0.3350667
A346XPIBKBQ8Z6        -0.842695945 0.3419287
A34HWABNHGW5OX        -0.045602060 0.3145530
A35HYQ9VF901CJ         0.196376469 0.3179913
A35J0Z5315SEBK        -1.020171824 0.3456888
A35KAB94CTUJL          0.091453548 0.3071105
A35UOR07SAT5IY         0.535405595 0.3227343
A364CZ890UVP15        -1.210661784 0.3568353
A36A780ODXBDEH         0.494177349 0.3225133
A36ESW7AECVHK3        -1.211805668 0.3511582
A3774HPOUKYTX7         1.003714940 0.3550552
A377LTGWJKY2IW        -0.309828554 0.3140269
A37EV8RZ82WT8E        -1.307905787 0.3645956
A37S96RT1P1IT2         0.140692858 0.3067594
A37WDOIQH6JM6V        -0.321824136 0.3168869
A381ETCY4H4WI6        -0.174846258 0.3078026
A381XY4G5P1VCH        -0.617338344 0.3139657
A397QMUM40C4SH         0.024397264 0.3115567
A3AELT3Y5E6X7U        -1.343935096 0.3657581
A3ANJRMHMVC97K         0.408101857 0.3200588
                              Q2.5         Q97.5
A074332538R4YYDPXNF01 -0.254683125  0.9914392750
A11EL5LWS2L1HX         0.111133975  1.4729392500
A11FGDHNWN992         -0.711778350  0.5170214500
A11W7R2O4RQSSS        -0.582943825  0.6835991750
A12HWPFXQPITHD        -1.106165250  0.1945332000
A136K9Y7E4C3G         -0.981455950  0.2739675000
A143J3H0S644SM        -1.889422750 -0.5130695500
A149ROBL26JWPJ        -1.243536750 -0.0066429103
A14JGIN4ZXXLGD        -0.951639925  0.2538921500
A14OPFM8OFA4WF        -1.182130250  0.0775951875
A14WLAP6TCEKO0        -0.447235150  0.7874202500
A15PHPJA7AWCS3         0.365762825  1.7449227500
A15SUPIZ05ZFCD        -0.239432150  1.0345055000
A16HSMUJ7C7QA7        -1.270304750 -0.0547590100
A16OH8XXYY0AAS        -0.200444450  1.0618860000
A16QR0D9MVFMS7        -0.966838725  0.3213562750
A16UI9RHNATNUB        -0.510556925  0.6842927500
A17D6BK59S31BM        -0.829776225  0.3727627500
A17QHU5Q0FS3GW        -0.647406075  0.6055717750
A183WYXN12P2TJ        -0.627363400  0.6073667500
A188SHJZPHE8BA        -0.062760312  1.2361710000
A18E16UFE351U6         0.243825975  1.5596642500
A18SXC3JEN1O0U        -1.365299000 -0.0921185475
A18VIO909RWY6D        -0.777908525  0.4537706500
A19OCD2Q0K2U6M        -1.037993750  0.1866485000
A1A9402JQBA2AF        -1.044464500  0.1926606750
A1AFOBARMIFUSW        -0.016040132  1.2736055000
A1BBJJHGM0ADN7        -2.058428750 -0.6660393500
A1BBZ9UGENEQZB        -1.710520250 -0.4105556500
A1BM57TUNAQIXM        -0.485617300  0.7277792250
A1C7XI68SED8JE        -0.638957400  0.5923518250
A1CPLS7BLMNMZ7        -0.721162725  0.4969547000
A1CY7IOJ9YH136         0.191898875  1.4775605000
A1D9ZWU1M46SAF        -0.948326300  0.2858323250
A1DD22MXYY0AWP         0.112532750  1.4591630000
A1DK0O56F7GXKB        -0.488327500  0.7533525250
A1DM0HNMZAC1E8        -0.733584175  0.4958479500
A1DNJ17PE2RYJZ        -0.236991950  1.0043437500
A1E1PEJCLK9OAJ        -1.249260500  0.0240596375
A1F1TBDHPYAAXT        -1.657560250 -0.3726241000
A1F2WHEEM0QQ1B        -0.516743725  0.7154883250
A1F9W03R8ZMDO7        -0.713510150  0.5222400000
A1FHKK0RU69RU         -0.871351625  0.3303780000
A1FNNL4YJGBU8U        -0.317239250  0.9497849000
A1FS8SBR4SDWYG        -0.718166075  0.5177387000
A1G187YBG0DVMQ        -0.098294705  1.1595645000
A1GCTKOPKUTW3G        -0.379756900  0.8502918750
A1H5Q9HRH4RPZU        -1.034769000  0.2064899500
A1H72Y9Z5NJXDS        -0.365462825  0.8764440000
A1HAOXJVRYT43K        -0.346788150  0.8844257000
A1HGAHZSM14YTV        -1.690629250 -0.3663766250
A1HNR6OIRFCEHS        -0.784061800  0.4115731250
A1HQ94T9O4AV39        -0.855871375  0.3937508250
A1ICWR931J4062        -0.598688625  0.6664658500
A1IEAOCJNSPVRX         0.364693025  1.7705807500
A1IUX91LA3UUQ8        -0.426478150  0.8145364000
A1J8TVICSRC70W        -0.618844400  0.5832952750
A1JIIKZ0LB73GZ        -0.771471175  0.4604992250
A1JJYY622DGE5L        -0.327440175  0.9288144000
A1K4KR1GQYCIWA        -1.099342250  0.1745847750
A1L3937MY09J3I        -0.293030400  0.9421944750
A1LSNEWP9PZRV2        -0.106482900  1.2442302500
A1MYSQNDCRU54G        -1.207640250  0.0883631075
A1NLJ1L4VCQYV2        -0.554544450  0.6889749250
A1O0BGHFTMPQM0         0.177296475  1.5575812500
A1O67YS3DU0ZHX        -0.336549675  0.9046802500
A1OPGPTQJ48XOY         0.121866725  1.4727022500
A1P6OXEJ86HQRM        -0.054795682  1.2299027500
A1PB9RGHUXNVP6        -1.217315500  0.0155382100
A1PEUJ23G02GUZ         0.012635475  1.2942802500
A1PP1FS377QA79        -0.132639875  1.1338782500
A1PUHCEBSOWETV        -0.527157400  0.7144080500
A1R1F51OC1NGAG        -0.663600225  0.5433211750
A1S96IXZ4IV0OU        -0.822741275  0.3740033750
A1SNC8UL8YFRH5         0.386522350  1.7764667500
A1SP3GBRZKMWZJ        -0.877104250  0.3300577000
A1SUNOPZGPARCY        -0.287814425  0.9423404750
A1T9VHNIS0BETZ        -0.580682325  0.6589530250
A1TLNLB9D87H6          0.022960385  1.3441845000
A1TLQ6BTDQX7US        -0.002918821  1.2768262500
A1UBV2NP7OVDVV        -0.327175775  0.9076543250
A1UY3Q0D2OCZJY        -0.925894225  0.2968912750
A1UZL0ATEWD4G9        -1.314021000 -0.0560581725
A1VVR9MA1P9HWJ         0.492389125  1.9615072500
A1VZFQTTLOYIY0         0.329612025  1.7027825000
A1VZSFHTU51JP0        -0.125827250  1.1286900000
A1WJU1IQ3UTRC6        -1.027753500  0.2320600000
A1XH62A94I3U61         0.082743125  1.3797305000
A1XVEKS9O73ERE        -1.700524750 -0.3714487750
A1Y6VW621TEYXN        -1.128371750  0.1150485250
A1Y9VA9FKJLS5K        -0.550233050  0.7151477000
A1YI1H05AQ3ING        -1.565382500 -0.2472915500
A1YSYI926BBOHW         0.449550675  1.9449212500
A1Z8AOIDT5IV43        -0.929839050  0.2975879250
A1ZB2NY0F9QNP0        -0.183698250  1.0777445000
A1ZD8RU6YB0VEU        -0.451605625  0.7701037500
A1ZR710QUGFM2Z        -0.127307475  1.1595502500
A1ZT30BGR3266K        -0.318118275  0.9160097750
A1ZVCHY6HYVHGA        -0.469662500  0.7328477500
A2043AJAJ5TSAS        -0.636871200  0.6117329500
A207IHY6GERCFO        -1.099201750  0.1750065750
A20N1NK5X5S88F        -1.619687250 -0.2827893250
A20NITCOBY4775         0.501772775  1.9580832500
A20RVM3V1A3DKX        -0.571252075  0.6591439250
A20SXG1DHDIDI7        -1.027776750  0.2445717250
A21KF567E8ZCLO        -0.229457850  1.0390717500
A21UA6O7ZFAIQJ        -0.474939700  0.7574156750
A221JJK7P6K22W        -1.201170000  0.0434167350
A22AHPN2HZHFSV        -0.640888375  0.6008291750
A22CN9X0JP1HM4        -0.092378507  1.1616880000
A22IIMLQ7K4B3M        -0.516464800  0.7543760000
A23K7MLCDZPV0D        -0.189336975  1.1443500000
A2482SLAY120J2        -1.713815500 -0.3785026500
A248LF7KKHXZ14        -0.460620600  0.7765952250
A24O2DYQRAJUXN        -0.663010550  0.5859955000
A2541C8MY0BYV3        -0.336414350  0.8915170500
A25R2OI9L2Q1OW        -1.815316000 -0.4005242250
A266LNUJOVKCDS        -0.734117325  0.4633744250
A26M997VYVK0E6        -0.024381360  1.2638812500
A26NGLGGFTATVN        -1.151241500  0.0979786900
A26WJPE2RS98NM        -0.428521000  0.7789980250
A272X64FOZFYLB        -0.193171775  1.0834520000
A273EH17NSJRH0        -2.055894250 -0.5587744000
A279YSE7NB16M0         0.130188675  1.4270570000
A27SMEOPKV84VI        -0.444786975  0.7842295250
A28RGK00V59HVE        -0.793896325  0.4202075750
A297OTX4PW0XS3        -1.270922000 -0.0106357050
A29AKJXQ248KNK        -1.405791500 -0.1534723750
A29Y6CQRJVXGIQ        -0.817458225  0.4298275000
A2AGQGMZVSZVUJ        -1.056503000  0.2062448750
A2AJ5QFNC9KF43        -0.306946875  0.9204324250
A2AYD8G2NV0RNQ        -0.317300500  0.9197068000
A2B227N1NQYS56         0.101508850  1.4809250000
A2B4GWF7MF7AOB        -1.075305000  0.1550316000
A2B7SPYBPF7H8I        -1.616125000 -0.2482958500
A2B95Y9QQ49U8T        -0.892262625  0.3334544000
A2BHHEWR9PRDX8        -1.061123250  0.1764948500
A2BW6WD7LZ9EGV         0.092102215  1.4676000000
A2C08Y1SWYN7IN        -0.828012225  0.3998390500
A2C6HMH2FDM2CI        -1.225162500  0.0536948800
A2CISHIOILFDHN         0.454983200  1.9223522500
A2CJYS92WX7HN6        -1.589164750 -0.2380243250
A2CK0OXMPOR9LE        -0.602104425  0.6086740250
A2CWNRI11XJ7WX        -0.196178725  1.1164702500
A2DNLHS1RSTF5R        -0.804511100  0.3758326250
A2DVV59R1CQU6T         0.177137300  1.4839112500
A2EI075XZT9Y2S        -0.930112300  0.3220739500
A2EKR2ZFO10VMV         0.093848532  1.3882750000
A2EPBSY0VPI38S        -0.923401350  0.2871718000
A2ESE3IBTNAEB7        -2.023561000 -0.6191500750
A2ETY1O927Z1IF        -0.154935475  1.1891595000
A2FIMENJ9UMN7M        -0.758792275  0.4510562250
A2FXD55FJV1RSV        -0.044674862  1.2491552500
A2G7N0X0PNX0EE         0.023898783  1.2973167500
A2GAVM7Q923ZY1        -0.586945575  0.6310468750
A2GJYB46FWIB5Q        -0.804879650  0.4356734750
A2GUS23FYGLPGW        -0.907275850  0.2782661750
A2GV9WSNSPX53         -0.494502625  0.7302640250
A2H6K1XIK4LY7O        -0.940112925  0.3258024750
A2HA7R3TR3TR1A        -0.747714175  0.4870092250
A2HSCKH5NKN5LP        -0.984877200  0.2641540750
A2HWV497VIPO4I        -0.731350925  0.5494499000
A2I960JYUZ8KAV         0.353411575  1.7362007500
A2IE9322Z6HYC7        -0.342329700  0.9351649500
A2INXY39KBM92F         0.097992052  1.4444120000
A2IOCN8EW1E3VE        -0.760603300  0.5124292500
A2IVGLOBFOT67M        -0.240328100  0.9470012000
A2JCHN90PRUWDH        -0.123116700  1.1559687500
A2JOHICL072IY3        -2.024791000 -0.6097116250
A2JSIDRTDGDC7T        -0.470937700  0.7572585000
A2K53OHEY92410        -0.773479200  0.4314468750
A2LMQ4497NMK3S         0.103729925  1.4857085000
A2LPP288NK76W4        -0.152469750  1.1173862500
A2MKXI4KCRRI7Y        -1.340959250 -0.0226656875
A2NBBQ3DKW5MV3        -1.084928750  0.1242990250
A2NEFRREWF33YP        -0.251673425  1.0166127500
A2NGMLBFZ3YQP5         0.165910575  1.5057955000
A2NHY01ZTYMYX4        -0.475502200  0.7452365500
A2NJ6AR78O07FD        -1.908223500 -0.5494239500
A2O7LNRIBPIHAF        -0.860178550  0.3403599000
A2O8L681OIZGPV        -0.855287125  0.4294414500
A2P8V5SKYLL5I4        -0.315585650  0.9342498500
A2PMT4061B1NDP         0.169135800  1.4908497500
A2PPD1LPCLF7B5        -0.891673525  0.3192466500
A2PXJTMWGUE5DC        -1.308692750 -0.0458238825
A2QIBANJO8H4NJ        -0.961902375  0.2534852750
A2QWTQ4I70BRWO        -1.341492250 -0.1207970750
A2R89RXGEVG05I        -1.585066500 -0.2565083000
A2RANGOPK67HX9        -1.109879750  0.1581341000
A2RXH2WQVVTAPY        -0.830656050  0.3740083000
A2S75O867RJG0I        -0.923012125  0.3187238750
A2SAPY77TLB1KA        -0.880769400  0.3327472750
A2SD7GN80U31GW         0.041790238  1.3464875000
A2SO6K35NMGBB7        -1.570881250 -0.3102662500
A2TD4A59NSRLBF        -1.126168500  0.0933511500
A2TLN8489YGY81        -0.264048725  1.0421260000
A2TUUIV61CR0C7        -0.321307850  0.9065975250
A2UX7ZJEGGU5           0.477836750  1.9550647500
A2V27A9GZA1NR2        -1.727036000 -0.3724603500
A2VFEDAK5C1E1O        -0.062480072  1.2164312500
A2VQ1WGHLLLNJ1        -0.717970975  0.4600955250
A2VRDE2FHCBMF8        -0.312921950  0.9364475000
A2VURQMBDXLUCC         0.171291075  1.5250857500
A2VXEPC4KG1CWU         0.319201725  1.6805327500
A2W8ZV9DQWVHJK         0.202274575  1.5484117500
A2WEEHSZ6LRPIQ        -0.930063825  0.2471531250
A2WWYVKGZZXBOB        -1.966101750 -0.5864062000
A2WYCY1FMQOD5F        -0.368044425  0.8522185500
A2X7705RU1QQYB        -1.007346000  0.1877824250
A2XQ3CFB5HT2ZQ        -0.243546875  1.0399312500
A2YAYHZYI7M3HD        -0.472148475  0.7371610750
A2YD8L5EPVCZBL        -0.827921625  0.3524082250
A2YGAEODJ5SSF6        -0.730329150  0.4824864000
A2YGOORS5N9RW8        -0.826699000  0.3740344000
A2YHOJLEZR8663        -0.972905650  0.2769910000
A2YKYAZYVWOXBO        -1.928598250 -0.5111288000
A2YOVBJ9EXAI8W        -1.148033250  0.0832360825
A2YWSSQEXXCRGK        -0.198528150  1.0147662500
A2YYF6QXHYRN88        -0.668855100  0.6616782500
A2Z7SWO6HS5OOI        -1.673784500 -0.3563956500
A2ZBDD2PGJ262Y         0.019371628  1.3210580000
A2ZD06QDBVKF59        -1.038149000  0.1858571250
A2ZGRB5DEGOG9C        -0.274567575  0.9813192750
A2ZQCHONMAJZF          0.354832300  1.7745045000
A30MP4LXV4MIFD        -0.625885300  0.6107987500
A30NWLRPW1XUSH        -0.260710400  0.9760958250
A31681CCEVDIH3        -0.079451997  1.2189932500
A31908QXT8U4A0        -2.059075750 -0.5888618500
A31BFQ3V5CLBGH        -0.413888425  0.7852949000
A31CQ2BUTMPXCT        -1.167617500  0.0488774100
A31Z13BGZDNRN9        -1.741699250 -0.4339244250
A346XPIBKBQ8Z6        -1.526896750 -0.1790738250
A34HWABNHGW5OX        -0.664983750  0.5655065500
A35HYQ9VF901CJ        -0.423797100  0.8139099000
A35J0Z5315SEBK        -1.698983500 -0.3537940500
A35KAB94CTUJL         -0.514330800  0.6822570750
A35UOR07SAT5IY        -0.089448712  1.1626230000
A364CZ890UVP15        -1.920290750 -0.5266096000
A36A780ODXBDEH        -0.139952850  1.1351637500
A36ESW7AECVHK3        -1.913191750 -0.5298058250
A3774HPOUKYTX7         0.322791150  1.7236667500
A377LTGWJKY2IW        -0.928226725  0.3194300250
A37EV8RZ82WT8E        -2.047494250 -0.6067243000
A37S96RT1P1IT2        -0.476805450  0.7373187500
A37WDOIQH6JM6V        -0.938994750  0.2927608500
A381ETCY4H4WI6        -0.782547825  0.4322311250
A381XY4G5P1VCH        -1.229410000 -0.0009030366
A397QMUM40C4SH        -0.579178525  0.6330701250
A3AELT3Y5E6X7U        -2.078294000 -0.6399085500
A3ANJRMHMVC97K        -0.210008800  1.0456937500

The first block, headed by

$question
, , Intercept

is telling you the effect of each question when undocumented=0. The following subheading, ,,undocumented, shows you the effect of each question when undocumented=1. The final block, headed by

$turkID
, , Intercept

gives the participant-level intercepts.

Remember that these tables are summaries of draws from the joint posterior distribution. There is a lot of richness here for visualization and understanding of uncertainty. Solomon’s blog post has some ideas for how you might want to visualize these group-level effects. The excellent tidybayes package is another great resource for visualization.

2 Likes