I defined the data for Stan as below:
data_csv<-read.csv("generice.csv",header=TRUE,sep=",")
data_csv<-na.omit(data_csv)
offset <- 2 # column number we ignore to start with in data.frame
imo <- as.integer(27)
jmo <- array(NA, imo)
for(i in 1:imo){
  jmo[i] <- max(data_csv[,i + offset])   ## i+1 as the first column is idno
}
nth <- as.integer(6)
gen_con_simo <- function(length){
  return(rep(c(2), length))
}
######
data <-list (
  N = nrow(data_csv),
  Y = as.array(data_csv[, "e4"]),
  nthres = nth,
  K = imo +1,
  X = as.matrix(data_csv[, (1 + offset):(imo + offset + 1)], rownames.force = 
 NA),
  Ksp = imo, 
  Imo = imo,
  Jmo = jmo,
  disc =as.integer(1),
  prior_only = 1
)
for(i in 1:imo) {
  ind <- i + offset
  data[[paste("Xmo_", as.character(i), sep = '')]] = array(data_csv[, ind])
  data[[paste("con_simo_", as.character(i), sep = '')]] = gen_con_simo(jmo[i])
}
functions {
  /* cumulative-logit log-PDF for a single response
   * Args:
   *   y: response category
   *   mu: latent mean parameter
   *   disc: discrimination parameter
   *   thres: ordinal thresholds
   * Returns:
   *   a scalar to be added to the log posterior
   */
   real cumulative_logit_lpmf(int y, real mu, real disc, vector thres) {
     int nthres = num_elements(thres);
     real p;
     if (y == 1) {
       p = inv_logit(disc * (thres[1] - mu));
     } else if (y == nthres + 1) {
       p = 1 - inv_logit(disc * (thres[nthres] - mu));
     } else {
       p = inv_logit(disc * (thres[y] - mu)) -
           inv_logit(disc * (thres[y - 1] - mu));
     }
     return log(p);
   }
  /* cumulative-logit log-PDF for a single response and merged thresholds
   * Args:
   *   y: response category
   *   mu: latent mean parameter
   *   disc: discrimination parameter
   *   thres: vector of merged ordinal thresholds
   *   j: start and end index for the applid threshold within 'thres'
   * Returns:
   *   a scalar to be added to the log posterior
   */
   real cumulative_logit_merged_lpmf(int y, real mu, real disc, vector thres, int[] j) {
     return cumulative_logit_lpmf(y | mu, disc, thres[j[1]:j[2]]);
   }
  /* compute monotonic effects
   * Args:
   *   scale: a simplex parameter
   *   i: index to sum over the simplex
   * Returns:
   *   a scalar between 0 and 1
   */
  real mo(vector scale, int i) {
    if (i == 0) {
      return 0;
    } else {
      return rows(scale) * sum(scale[1:i]);
    }
  }
}
data {
  int a;
  int b[1];
  
  int<lower=1> N;  // number of observations
  int Y[N];  // response variable
  int<lower=2> nthres;  // number of thresholds
  int<lower=1> K;  // number of population-level effects
  matrix[N, K] X;  // population-level design matrix
  int<lower=1> Ksp;  // number of special effects terms
  int<lower=1> Imo;  // number of monotonic variables
  int<lower=1> Jmo[Imo];  // length of simplexes
  // monotonic variables
  int Xmo_1[N];
  int Xmo_2[N];
  int Xmo_3[N];
  int Xmo_4[N];
  int Xmo_5[N];
  int Xmo_6[N];
  // prior concentration of monotonic simplexes
  vector[Jmo[1]] con_simo_1;
  vector[Jmo[2]] con_simo_2;
  vector[Jmo[3]] con_simo_3;
  vector[Jmo[4]] con_simo_4;
  vector[Jmo[5]] con_simo_5;
  vector[Jmo[6]] con_simo_6;
  
  real<lower=0> disc;  // discrimination parameters
  int prior_only;  // should the likelihood be ignored?
}
transformed data {
  int Kc = K;
  matrix[N, Kc] Xc;  // centered version of X
  vector[Kc] means_X;  // column means of X before centering
  for (i in 1:K) {
    means_X[i] = mean(X[, i]);
    Xc[, i] = X[, i] - means_X[i];
  }
}
parameters {
  vector[Kc] b;  // population-level effects
  ordered[nthres] Intercept;  // temporary thresholds for centered predictors
  vector[Ksp] bsp;  // special effects coefficients
  // simplexes of monotonic effects
  simplex[Jmo[1]] simo_1;
  simplex[Jmo[2]] simo_2;
  simplex[Jmo[3]] simo_3;
  simplex[Jmo[4]] simo_4;
  simplex[Jmo[5]] simo_5;
  simplex[Jmo[6]] simo_6;
}
transformed parameters {
}
model {
  // initialize linear predictor term
  vector[N] mu = Xc * b;
  for (n in 1:N) {
    // add more terms to the linear predictor
    mu[n] += (bsp[1]) * mo(simo_1, Xmo_1[n]) + (bsp[2]) * mo(simo_2, Xmo_2[n]) + (bsp[3]) * mo(simo_3, Xmo_3[n]) + (bsp[4]) * mo(simo_4, Xmo_4[n]) + (bsp[5]) * mo(simo_5, Xmo_5[n]) + (bsp[6]) * mo(simo_6, Xmo_6[n]));
  }
  // priors including all constants
  target += normal_lpdf(b | 0,1);
  target += normal_lpdf(Intercept | 0,10);
  target += normal_lpdf(bsp | 0,1);
  target += dirichlet_lpdf(simo_1 | con_simo_1);
  target += dirichlet_lpdf(simo_2 | con_simo_2);
  target += dirichlet_lpdf(simo_3 | con_simo_3);
  target += dirichlet_lpdf(simo_4 | con_simo_4);
  target += dirichlet_lpdf(simo_5 | con_simo_5);
  target += dirichlet_lpdf(simo_6 | con_simo_6);
  // likelihood including all constants
  if (!prior_only) {
    for (n in 1:N) {
      target += ordered_logistic_lpmf(Y[n] | mu[n], Intercept);
    }
  }
}
generated quantities {
  // compute actual thresholds
  vector[nthres] b_Intercept = Intercept + dot_product(means_X, b);
  }
I ran the ordinal regression in brms and tried to convert the syntax to stan to  apply time-series autoregressive  with 4 time points.
Here are the syntax I used without time-series.
Thanks,
Shabnam