I have to use two PC-s for running models, since one of them can not run more complex models; however, simple ones run well. I have googled the error, but haven’t found a solution. Do you have any suggestions for solving such problem?
Such models run like charm:
fit_simple = brm(bf(y ~ p1, hu ~ p1), data = data_nl, family = hurdle_lognormal(), cores = 3, chains = 3)
And more complex ones like
fit_complex = brm(bf(y ~ p1 + p2 + p3 + p4 + p5 + p6 + p7, hu ~ p1 + p2 + p3 + p4 + p5 + p6 + p7), data = data_nl, family = hurdle_lognormal(), cores = 3, chains = 3)
Give the following error:
Error in unserialize(socklist[[n]]) : error reading from connection
16.
unserialize(socklist[[n]])
15.
recvOneData.SOCKcluster(cl)
14.
recvOneData(cl)
13.
recvOneResult(cl)
12.
dynamicClusterApply(cl, fun, length(x), argfun)
11.
clusterApplyLB(cl = cl, x = splitList(X, nchunks), fun = lapply, FUN = fun, ...)
10.
do.call(c, clusterApplyLB(cl = cl, x = splitList(X, nchunks), fun = lapply, FUN = fun, ...), quote = TRUE)
9.
parallel::parLapplyLB(cl, X = 1:chains, fun = callFun)
8.
.local(object, ...)
7.
.fun(object = .x1, data = .x2, pars = .x3, include = .x4, iter = .x5, seed = .x6, init = .x7, warmup = .x8, thin = .x9, control = .x10, show_messages = .x11, chains = .x12, cores = .x13)
6.
.fun(object = .x1, data = .x2, pars = .x3, include = .x4, iter = .x5, seed = .x6, init = .x7, warmup = .x8, thin = .x9, control = .x10, show_messages = .x11, chains = .x12, cores = .x13) at <text>#1
5.
eval(expr, envir, ...)
4.
eval(expr, envir, ...)
3.
eval2(call, envir = args, enclos = parent.frame())
2.
do_call(rstan::sampling, args)
1.
brm(bf(postacute_therapy ~ off_inpatient_rehabilitation + off_inpatient_nursing + off_other_inpatient + off_outpatient_physiotherapy + off_other_outpatient, hu ~ off_inpatient_rehabilitation + off_inpatient_nursing + off_other_inpatient + off_outpatient_physiotherapy + ...
Error in serialize(data, node$con, xdr = FALSE) : error writing to connection
15.
serialize(data, node$con, xdr = FALSE)
14.
sendData.SOCK0node(con, list(type = type, data = value, tag = tag))
13.
sendData(con, list(type = type, data = value, tag = tag))
12.
postNode(n, "DONE")
11.
stopNode(n)
10.
stopCluster.default(cl)
9.
parallel::stopCluster(cl)
8.
.local(object, ...)
7.
.fun(object = .x1, data = .x2, pars = .x3, include = .x4, iter = .x5, seed = .x6, init = .x7, warmup = .x8, thin = .x9, control = .x10, show_messages = .x11, chains = .x12, cores = .x13)
6.
.fun(object = .x1, data = .x2, pars = .x3, include = .x4, iter = .x5, seed = .x6, init = .x7, warmup = .x8, thin = .x9, control = .x10, show_messages = .x11, chains = .x12, cores = .x13) at <text>#1
5.
eval(expr, envir, ...)
4.
eval(expr, envir, ...)
3.
eval2(call, envir = args, enclos = parent.frame())
2.
do_call(rstan::sampling, args)
1.
brm(bf(postacute_therapy ~ off_inpatient_rehabilitation + off_inpatient_nursing + off_other_inpatient + off_outpatient_physiotherapy + off_other_outpatient, hu ~ off_inpatient_rehabilitation + off_inpatient_nursing + off_other_inpatient + off_outpatient_physiotherapy + ...
These solutions did not work out:
rstan_options(auto_write=TRUE)
options(mc.cores=parallel::detectCores())
Other info that may help:
utils::sessionInfo()
R version 3.6.1 (2019-07-05)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 18363)
Matrix products: default
locale:
[1] LC_COLLATE=Estonian_Estonia.1257 LC_CTYPE=Estonian_Estonia.1257 LC_MONETARY=Estonian_Estonia.1257 LC_NUMERIC=C
[5] LC_TIME=Estonian_Estonia.1257
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] MuMIn_1.43.17 RColorBrewer_1.1-2 survminer_0.4.6 ggeffects_0.15.0 coefplot_1.2.6 lme4_1.1-23
[7] Matrix_1.2-17 Hmisc_4.4-0 Formula_1.2-3 lattice_0.20-38 corrplot_0.84 ggalt_0.4.0
[13] ggforce_0.3.1 factoextra_1.0.7 ggthemes_4.2.0 ggrepel_0.8.2 ggpubr_0.3.0.999 rstan_2.19.3
[19] StanHeaders_2.21.0-1 tidybayes_2.0.3 pscl_1.5.5 boot_1.3-24 MASS_7.3-51.4 AER_1.2-9
[25] survival_3.1-11 sandwich_2.5-1 lmtest_0.9-37 zoo_1.8-7 car_3.0-8 carData_3.0-4
[31] knitr_1.28 bestNormalize_1.4.3 bayesplot_1.7.1 magrittr_1.5 skimr_2.1 brms_2.12.0
[37] Rcpp_1.0.4.6 treemapify_2.5.3 broom_0.5.6 finalfit_1.0.0 forcats_0.5.0 stringr_1.4.0
[43] dplyr_1.0.0 purrr_0.3.4 readr_1.3.1 tidyr_1.1.0 tibble_3.0.1 ggplot2_3.3.2
[49] tidyverse_1.3.0 easypackages_0.1.0
loaded via a namespace (and not attached):
[1] tidyselect_1.1.0 htmlwidgets_1.5.1 grid_3.6.1 devtools_2.3.0 munsell_0.5.0 codetools_0.2-16
[7] statmod_1.4.34 DT_0.13 miniUI_0.1.1.1 withr_2.2.0 Brobdingnag_1.2-6 colorspace_1.4-1
[13] rstudioapi_0.11 stats4_3.6.1 ggsignif_0.6.0 Rttf2pt1_1.3.8 repr_1.1.0 KMsurv_0.1-5
[19] polyclip_1.10-0 farver_2.0.3 bridgesampling_1.0-0 rprojroot_1.3-2 coda_0.19-3 vctrs_0.3.1
[25] generics_0.0.2 xfun_0.13 R6_2.4.1 markdown_1.1 doParallel_1.0.15 assertthat_0.2.1
[31] promises_1.1.0 scales_1.1.1 nnet_7.3-12 gtable_0.3.0 ash_1.0-15 rethinking_1.59
[37] processx_3.4.2 rlang_0.4.6 splines_3.6.1 lazyeval_0.2.2 rstatix_0.5.0.999 extrafontdb_1.0
[43] acepack_1.4.1 checkmate_2.0.0 inline_0.3.15 yaml_2.2.1 reshape2_1.4.4 abind_1.4-5
[49] modelr_0.1.6 threejs_0.3.3 crosstalk_1.1.0.1 backports_1.1.7 useful_1.2.6 httpuv_1.5.2
[55] rsconnect_0.8.16 extrafont_0.17 tools_3.6.1 usethis_1.6.0 ellipsis_0.3.1 sessioninfo_1.1.1
[61] ggridges_0.5.2 plyr_1.8.6 base64enc_0.1-3 ps_1.3.3 prettyunits_1.1.1 rpart_4.1-15
[67] cowplot_1.0.0 cluster_2.1.0 haven_2.3.1 fs_1.4.1 data.table_1.12.8 openxlsx_4.1.5
[73] colourpicker_1.0 reprex_0.3.0 mvtnorm_1.0-12 packrat_0.5.0 matrixStats_0.56.0 pkgload_1.1.0
[79] evaluate_0.14 hms_0.5.3 shinyjs_1.1 mime_0.9 arrayhelpers_1.1-0 xtable_1.8-4
[85] shinystan_2.5.0 jpeg_0.1-8.1 rio_0.5.16 readxl_1.3.1 gridExtra_2.3 rstantools_2.0.0
[91] testthat_2.3.2 compiler_3.6.1 mice_3.8.0 maps_3.3.0 KernSmooth_2.23-15 crayon_1.3.4
[97] minqa_1.2.4 htmltools_0.4.0 later_1.0.0 lubridate_1.7.8 DBI_1.1.0 sjlabelled_1.1.5
[103] tweenr_1.0.1 dbplyr_1.4.2 proj4_1.0-10 cli_2.0.2 insight_0.8.5 parallel_3.6.1
[109] igraph_1.2.5 km.ci_0.5-2 pkgconfig_2.0.3 foreign_0.8-71 plotly_4.9.2.1 xml2_1.3.1
[115] foreach_1.5.0 svUnit_0.7-12 dygraphs_1.1.1.6 rngtools_1.5 rvest_0.3.5 doRNG_1.8.2
[121] callr_3.4.3 digest_0.6.25 cellranger_1.1.0 survMisc_0.5.5 htmlTable_1.13.3 curl_4.3
[127] shiny_1.4.0.2 gtools_3.8.2 nloptr_1.2.2.1 lifecycle_0.2.0 nlme_3.1-140 jsonlite_1.6.1
[133] viridisLite_0.3.0 desc_1.2.0 fansi_0.4.1 pillar_1.4.4 loo_2.2.0 fastmap_1.0.1
[139] httr_1.4.1 pkgbuild_1.0.8 glue_1.4.1 xts_0.12-0 remotes_2.1.1 zip_2.0.4
[145] png_0.1-7 shinythemes_1.1.2 iterators_1.0.12 stringi_1.4.6 ggfittext_0.8.1 latticeExtra_0.6-29
[151] memoise_1.1.0