Hello everyone! I am currently setting up Stan with Torsten for a pharmacokinetic NLME (popPK) model. Huge thanks to the Stan and Torsten developers for all their contributions!
A bit of context: We work with a NLME model for a oncologic drug but we do not currently plan to perform a full Bayesian parameter estimation. Instead, we aim to use an existing fit obtained via Laplacian maximum likelihood estimation in NONMEM. Our goal is to individualize the parameters for a given patient once drug concentration measurements become available for that individual using stan.
The application scenario is a model-informed precision dosing app, where a clinician inputs all relevant covariates and measurements and receives a prediction with a 95% credible interval. The NONMEM model provides estimates for the variance of inter-individual (IIV) and inter-occasion variability (IOV) for parameters such as clearance. One occasion represents one cycle of drug administration. Typically, people either use the mode of the posterior via MAP estimation or approximate the posterior as a normal distribution. We aim to replace these biased approaches with a full Bayesian framework using Stan and Torsten.
Here is my current model:
/////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////////////////// PREAMBLE ///////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////////////////////////////
// stan representation of run5025
// 1. Based on: run5013
// 2. Description: train / log / 3cmt / iiv:CL/Q3 / iov:CL/Q3 / cov: eGFR on CL (pow) / M3 / no CWRES > 5 / LAPLACIAN
// 3. Structural model: 3cmt
// 4. Dispositon: fo
// 5. IIV: CL/Q3
// 6. IOV: CL/Q3
// 7. Covariates: eGFR on CL (pow)
// 8. RUV: exp
// 9. Estimation: LAPLACIAN
// 10. Author: Marian Klose
/////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////////////////// FUNCTIONS BLOCK ////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////////////////////////////
// functions data block
functions {
vector ode_rhs(
real t,
vector x,
array[] real parms,
array[] real x_r,
array[] int x_i
){
// extract parmeters from prms object in defined order, CL/V1/Q2/V2/Q3/V3
real CL = parms[1];
real V1 = parms[2];
real Q2 = parms[3];
real V2 = parms[4];
real Q3 = parms[5];
real V3 = parms[6];
// define rate constants based on params
real k10 = CL / V1;
real k12 = Q2 / V1;
real k21 = Q2 / V2;
real k13 = Q3 / V1;
real k31 = Q3 / V3;
// define ODE system
vector[3] y;
y[1] = - k10 * x[1] - k12 * x[1] - k13 * x[1] + k21 * x[2] + k31 * x[3];
y[2] = k12 * x[1] - k21 * x[2];
y[3] = k13 * x[1] - k31 * x[3];
// return the amount in the compartments
return y;
}
}
/////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////////////////// DATA BLOCK /////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////////////////////////////
// input data block (passed from R)
data {
// events
int<lower = 1> nEvents; // number of events
// observations
int<lower = 1> nObs; // number of observations
array[nObs] int<lower = 1> iObs; // indices of events which are observations
vector<lower = 0>[nObs] cObs; // observed concentration (the dv) used to generate posterior
// NONMEM standard event items
array[nEvents] int<lower = 1> cmt; // compartment number
array[nEvents] int evid; // event id (0=observation, 1=dose, 2=other)
array[nEvents] int addl; // number of additional identical doses given
array[nEvents] int ss; // is it steady-state dosing? (0=false, 1=true)
array[nEvents] real amt; // dose amount administered at this time
array[nEvents] real time; // time of observation/administration
array[nEvents] real rate; // rate of drug infusion (0 for bolus administration)
array[nEvents] real ii; // interdose interval: time between additional doses
// typical parameter values
real<lower = 0> TVCL; // typical value of central clearance
real<lower = 0> TVV1; // typical value of central volume
real<lower = 0> TVQ2; // typical value of shallow intercompartmental clearance
real<lower = 0> TVV2; // typical value of shallow peripheral volume
real<lower = 0> TVQ3; // typical value of deep intercompartmental clearance
real<lower = 0> TVV3; // typical value of deep peripheral volume
// fixed covariate effects
real<lower = 0> TH_EGFR_CL; // fixed effect of creatinine clearance on clearance
// measured covariates
array[nEvents] real<lower = 0> EGFR; // estimated glomerular filtration rate [ml/min]
// cycle information
array[nEvents] int<lower = 0> CYCLE; // cyle number, needed for IOV
// iiv standard deviations
real<lower = 0> IIV_SD_CL; // IIV (sd) on central clearance
real<lower = 0> IIV_SD_Q3; // IIV (sd) on intercompartimental clearance Q3
// iov standard deviations
real<lower = 0> IOV_SD_CL; // IOV (sd) on central clearance
real<lower = 0> IOV_SD_Q3; // IIV (sd) on intercompartimental clearance Q3
// ruv parameters
real<lower = 0> EXP_RUV_SD; // RUV (sd) for exponential error model
}
/////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////////////////// TRANSFORMED DATA BLOCK /////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////////////////////////////
// transformed data block
transformed data {
vector[nObs] logCObs = log(cObs); // log-transformed observations
int nTheta = 6; // number of parameters for ODE system
int nCmt = 3; // number of compartments (1 = central, 2 = shallow peripheral, 3 = deep peripheral)
}
/////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////////////////// PARAMETERS BLOCK ///////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////////////////////////////
// parameters block
parameters {
// clearance
real ETA_CL; // ind. iiv estimate
real KAPPA_CL_C1; // ind. iov estimate (cycle 1)
// intercompartmental clearance q3
real ETA_Q3; // individual iiv q3 estimates
real KAPPA_Q3_C1; // individual iov q3 estimates
}
/////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////////////////// TRANSFORMED PARAMETERS BLOCK ///////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////////////////////////////
// transformed parameters block
transformed parameters {
// predicted drug concentrations
matrix<lower = 0>[nCmt, nEvents] x; // drug amounts in each compartment over time
row_vector<lower = 0>[nEvents] cHat; // row vector, one element per event
vector<lower = 0>[nObs] cHatObs; // column vector, one element per *observation*
// retrieve correct KAPPA_CL and KAPPA_Q3 values
real KAPPA_CL = 0;
real KAPPA_Q3 = 0;
// define the time-varying parameter matrix theta [nEvents, nTheta] (n rows = number of time points, per row one set of nTheta params)
// see docs for details on 1d and 2d theta elements (2d needed for time-varying covariates)
array[nEvents, nTheta] real theta;
for (i in 1:nEvents) {
// extract correct kappas
// !!FIX ME: ADJUST KAPPA ACCORDING TO CYCLE; FOR NOW CYCLE 1 ONLY!!
if (CYCLE[i] == 1) {
KAPPA_CL = KAPPA_CL_C1;
KAPPA_Q3 = KAPPA_Q3_C1;
} else {
KAPPA_CL = KAPPA_CL_C1;
KAPPA_Q3 = KAPPA_Q3_C1;
}
// store thetas
theta[i, 1] = TVCL * pow(EGFR[i] / 84, TH_EGFR_CL) * exp(ETA_CL + KAPPA_CL);
theta[i, 2] = TVV1;
theta[i, 3] = TVQ2;
theta[i, 4] = TVV2;
theta[i, 5] = TVQ3 * exp(ETA_Q3 + KAPPA_Q3);
theta[i, 6] = TVV3;
}
// solve the ode system (x = drug amounts in each compartment over time)
x = pmx_solve_rk45(
ode_rhs, // ODE right hand side system
nCmt, // number of compartments
time, // time of events
amt, // amount of drug administered
rate, // rate of drug administered
ii, // interdose interval
evid, // event id
cmt, // compartment number
addl, // number of additional doses
ss, // steady state flag
theta, // individual parameters
1e-5, // relative tolerance
1e-8, // absolute tolerance
1e5 // maximum stepsize
);
// compute drug concentrations
for (i in 1:nEvents) {
cHat[i] = x[1, i] / theta[i, 2]; // need to loop even if v1 remains constant
}
cHatObs = to_vector(cHat[iObs]); // transform to column vector & keep relevant cells only
vector[nObs] log_cHatObs = log(cHatObs); // log-transformed predictions
}
/////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////////////////// MODEL BLOCK ////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////////////////////////////
// model block
model {
// informative priors for clearance
ETA_CL ~ normal(0, IIV_SD_CL); // IIV (sd) on central clearance
KAPPA_CL_C1 ~ normal(0, IOV_SD_CL); // IIV (sd) on intercompartimental clearance Q3
// informative priors for intercompartmental clearance Q3
ETA_Q3 ~ normal(0, IIV_SD_Q3); // IOV (sd) on central clearance
KAPPA_Q3_C1 ~ normal(0, IOV_SD_Q3); // IIV (sd) on intercompartimental clearance Q3
// likelihood function for exponential error model (expects SD for normal distribution)
logCObs ~ normal(log_cHatObs, EXP_RUV_SD);
}
/////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////////////////// GENERATED QUANTITIES BLOCK /////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////////////////////////////
// generated quantities block
generated quantities {
// sample prior etas
real prior_ETA_CL = normal_rng(0, IIV_SD_CL); // IIV (sd) on central clearance
real prior_KAPPA_CL_C1 = normal_rng(0, IOV_SD_CL); // IIV (sd) on intercompartimental clearance Q3
real prior_ETA_Q3 = normal_rng(0, IIV_SD_Q3); // IOV (sd) on central clearance
real prior_KAPPA_Q3_C1 = normal_rng(0, IOV_SD_Q3); // IIV (sd) on intercompartimental clearance Q3
// sample posterior
array[nObs] real logcObsPred; // introduce observations for posterior
for(i in 1:nObs) {
logcObsPred[i] = normal_rng(log_cHatObs[i], EXP_RUV_SD);
}
}
As you can see, we aim to obtain individual estimates for the IIV and IOV terms of the parameters CL and Q3, which are named ETA_CL
, KAPPA_CL_C1
, ETA_Q3
, and KAPPA_Q3_C1
. For simplicity, I am currently focusing only on Cycle 1. Later, we plan to estimate a separate KAPPA_x
for each cycle.
This brings me to my question: In the first cycle of an individual, we still need/want to estimate both the IIV and IOV terms for a given parameter. However, without multiple cycles, it becomes mathematically challenging to separate the IIV and IOV components, as both enter the equation in the same way:
theta[i, 1] = TVCL * pow(EGFR[i] / 84, TH_EGFR_CL) * exp(ETA_CL + KAPPA_CL);
This is also being evident in my mcmc_pairs()
plot:
For instance, we see a strong autocorrelation between ETA_CL
and KAPPA_CL_C1
. The mcmc_areas()
plot also show a similar behaviour where the posteriors are pushed towards the same direction, while the estimate with the higher CV% (= IIV terms) being allowed to deviate further from zero.
This raises a few concerns:
- Do I need to worry about that autocorrelation?
- Is it even meaningful to attempt estimating both IIV and IOV in the first cycle, where they cannot be clearly distinguished?
- What would be a reasonable alternative approach?
Would it make sense to merge the variance of IIV and IOV in the first cycle - estimating a single joint term - and then separate them once we enter the second cycle? The rest of the diagnostics appear well-behaved, but in other cases, I encountered chain terminations and errors, especially when the data was uninformative for CL and/or Q3.
# get summary
out$summary()
# A tibble: 643 Ă— 10
variable mean median sd mad q5 q95 rhat ess_bulk
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 lp__ -9.01e+0 -8.67e+0 1.41 1.20 -1.17e+1 -7.39e+0 1.00 1554.
2 ETA_CL -1.39e-1 -1.40e-1 0.125 0.124 -3.47e-1 6.98e-2 1.00 1724.
3 KAPPA_CL_… -7.09e-2 -7.10e-2 0.123 0.124 -2.75e-1 1.30e-1 1.00 1693.
4 ETA_Q3 3.95e-1 3.92e-1 0.209 0.210 5.39e-2 7.44e-1 1.00 2036.
5 KAPPA_Q3_… 3.14e-1 3.21e-1 0.205 0.204 -2.51e-2 6.39e-1 1.00 1928.
# â„ą 633 more rows
# â„ą 1 more variable: ess_tail <dbl>
I would be very grateful for any advice. Thank you!
Marian