Ordinal response with monotonic predictor

I modified the prior for cut-points to (0,5) and reran the syntax and it worked well with reasonable Rhat and convergence.

Group-Level Effects: 
~idno (Number of levels: 898) 
              Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
sd(Intercept)     4.32      0.15     4.04     4.62 1.00      711     1152

Population-Level Effects: 
                  Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
Intercept[1]        -11.74      0.54   -12.87   -10.72 1.00     1560     2403
Intercept[2]         -8.35      0.31    -8.97    -7.74 1.00     1307     2258
Intercept[3]         -5.80      0.23    -6.25    -5.36 1.00      859     1851
Intercept[4]         -3.61      0.19    -3.98    -3.23 1.01      639     1427
Intercept[5]         -1.81      0.18    -2.16    -1.46 1.01      560     1154
Intercept[6]         -0.01      0.17    -0.34     0.33 1.01      528     1297
Intercept[7]          1.50      0.17     1.17     1.85 1.01      529     1133
Intercept[8]          3.12      0.18     2.78     3.49 1.01      578     1077
Intercept[9]          4.70      0.20     4.32     5.08 1.01      677     1627
Intercept[10]         6.25      0.22     5.82     6.69 1.01      830     1734
Intercept[11]         7.98      0.26     7.48     8.50 1.01     1071     2221
Intercept[12]        10.02      0.33     9.38    10.67 1.00     1736     2649
Intercept[13]        12.00      0.45    11.16    12.90 1.00     2733     2877
Intercept[14]        14.64      0.87    13.10    16.56 1.00     4483     2673
        mochf         0.52      0.08     0.35     0.68 1.00     2247     2494

Simplex Parameters: 
                      Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
          mochf1[1]     0.17      0.09     0.03     0.36 1.00     3518     3121
          mochf1[2]     0.83      0.09     0.64     0.97 1.00     3518     3121

Thanks for your help and guidance,

3 Likes