I have been reading about the estimation of monotonic effects with the brms library by @paul.buerkner
I found it a very nice and interesting paper. The case study in the vignette
shows a linear model with an ordered predictor (income).
However, the paper also makes it clear that the method can be used with other link functions and GLMs.
I have doubts about how the coefficients would be interpreted in a binary logistic regression or an ordinal model. (i.e., with a binary or ordered response variable but also an ordered predictor). For example, I have fit the following model assessing life satisfaction vs income (4 level ordered variable). How could I interpret the coefficients for the slope and simplex parameters in terms of odds ratios??
library(brms)
fit1 <- brm(ordered(ls) ~ mo(income), data = dat, chains=1, iter=1000,family = cumulative(link = "logit"))
summary(fit1)
Family: cumulative
Links: mu = logit; disc = identity
Formula: ordered(ls) ~ mo(income)
Data: dat (Number of observations: 100)
Draws: 1 chains, each with iter = 1000; warmup = 500; thin = 1;
total post-warmup draws = 500
Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
Intercept[1] -2.87 0.45 -3.91 -2.07 1.00 453 369
Intercept[2] -1.30 0.35 -2.05 -0.67 1.00 584 398
Intercept[3] -0.53 0.32 -1.20 0.07 1.00 645 468
Intercept[4] 0.33 0.31 -0.30 0.91 1.00 601 437
Intercept[5] 1.92 0.41 1.11 2.75 1.00 667 392
moincome -0.25 0.15 -0.58 0.03 1.00 613 344
Simplex Parameters:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
moincome1[1] 0.31 0.23 0.01 0.81 1.01 521 226
moincome1[2] 0.34 0.22 0.02 0.81 1.02 680 222
moincome1[3] 0.34 0.23 0.03 0.82 1.00 722 203
Family Specific Parameters:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
disc 1.00 0.00 1.00 1.00 NA NA NA