Please also provide the following information in addition to your question:
- Operating System: Windows 10 Enterprise
- brms Version: brms_2.6.0
Hello
I ran the following the bernoulli Modell with brms
mo5 <- brm(mensa ~ age + gender + member + mo(Natt_1) + mo(Natt_6) + mo(Natt_9) +mo(Natt_10) + mo(tho_1) + mo(tho_5) + mo(meat) , data=df_R, family="bernoulli")
where mensa is a 0/1 Variable indicating if a person went to canteen for her/his lunch or if she/he brought her/his own food.
All variables with mo() are ordinal variables (see Bürkner, P. C., & Charpentier, E. (2018). Monotonic Effects: A Principled Approach for Including Ordinal Predictors in Regression Models.).
This are my results of the regression:
Family: bernoulli
Links: mu = logit
Formula: mensa ~ age + gender + member + mo(att_1) + mo(att_6) + mo(att_9) + mo(att_10) + mo(tho_1) + mo(tho_5) + mo(meat)
Data: df_R (Number of observations: 393)
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup samples = 4000Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
Intercept -0.86 1.25 -3.38 1.58 2556 1.00
age 0.10 0.03 0.03 0.17 3509 1.00
genderMann 0.46 0.28 -0.09 1.01 4243 1.00
memberMitarbeiterDin 0.72 0.56 -0.34 1.86 3176 1.00
memberAndere -2.01 1.04 -4.15 -0.00 3860 1.00
moatt_1 -1.55 0.50 -2.58 -0.62 2594 1.00
moatt_6 -0.82 0.53 -1.86 0.23 2457 1.00
moatt_9 -1.98 0.50 -3.04 -1.09 3225 1.00
moatt_10 2.53 0.59 1.45 3.72 2826 1.00
motho_1 -0.12 0.56 -1.25 1.02 3008 1.00
motho_5 -0.61 0.68 -2.11 0.57 2367 1.00
momeat 1.18 0.63 -0.06 2.50 2599 1.00Simplex Parameters:
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
moatt_11[1] 0.24 0.16 0.01 0.58 3546 1.00
moatt_11[2] 0.20 0.14 0.01 0.55 4682 1.00
moatt_11[3] 0.56 0.17 0.22 0.88 3891 1.00
moatt_61[1] 0.20 0.18 0.01 0.68 3371 1.00
moatt_61[2] 0.38 0.23 0.02 0.85 4597 1.00
moatt_61[3] 0.41 0.24 0.03 0.88 4364 1.00
moatt_91[1] 0.26 0.16 0.02 0.60 3575 1.00
moatt_91[2] 0.50 0.18 0.16 0.84 4492 1.00
moatt_91[3] 0.25 0.14 0.02 0.54 3727 1.00
moatt_101[1] 0.29 0.13 0.04 0.55 2472 1.00
moatt_101[2] 0.30 0.14 0.06 0.60 3477 1.00
moatt_101[3] 0.42 0.14 0.13 0.68 3096 1.00
motho_11[1] 0.37 0.25 0.01 0.87 4392 1.00
motho_11[2] 0.33 0.23 0.01 0.83 5029 1.00
motho_11[3] 0.30 0.22 0.01 0.80 4592 1.00
motho_51[1] 0.38 0.24 0.02 0.86 2990 1.00
motho_51[2] 0.38 0.24 0.02 0.87 3275 1.00
motho_51[3] 0.25 0.20 0.01 0.75 3350 1.00
momeat1[1] 0.18 0.14 0.01 0.50 4876 1.00
momeat1[2] 0.15 0.12 0.00 0.46 5877 1.00
momeat1[3] 0.17 0.13 0.01 0.48 4451 1.00
momeat1[4] 0.16 0.13 0.01 0.47 5069 1.00
momeat1[5] 0.21 0.15 0.01 0.55 3955 1.00
momeat1[6] 0.13 0.11 0.00 0.42 4883 1.00Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample
is a crude measure of effective sample size, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).
I am now not sure how to interpret the monotonic effects. Do I just add the Simplex Parameters?
For example for people who are in category [3] for “meat” the Estimator is 0 1.18+0.18+0.15+0.17? And what do I do with the Confidential Interval? Also just sum up?
And for negative Estimator I do the same? For example for People who are in category [1] in the ordinal variable “att_1” the estimator is = -1.55-0.24 and the 95% CI is= lowerbound -2.58 - 0.1 - 0.1 uperbound -0.62 -0.58 - 0.55?
Thank you in advance.