Hey all,
I’m trying to fit an IRT model for a set of psychosis screeners, with psychosis severity as the latent “ability”. My stan code looks like this:
data{
int<lower=1> I; // # of questions
int<lower=1> J; // # of persons
int<lower=1> N; // # of observations
int<lower=1> K; // # of diagnostic groups
int<lower=1, upper=I> ii[N]; // question for observation n
int<lower=1, upper=J> jj[N]; // person for n
int<lower=0, upper=1> y[N]; // response for n
int<lower=1, upper=K> status[J]; // diagnostic status for person J
}
parameters {
vector[I] difficulty; // 'difficulty' for item i
vector[I] discriminativeness; // discrimination for item i
real mu_disc; // average item discrimination
real<lower=0> sigma_disc; // sd for item discrimiation
real<lower=0> sigma_difficulty; // sd for item difficulty
real a_severity; // severity intercept (like 'ability' in standard IRT models)
vector[K] status_effect; // effect of diagnosis on severity
vector[J] epsilon; // severity for person j
}
transformed parameters {
vector[J] severity;
for (j in 1:J){
severity[j] = a_severity + status_effect[status[j]] + epsilon[j];
}
}
model {
sigma_difficulty ~ normal(0,1);
difficulty ~ normal(0,sigma_difficulty);
mu_disc ~ normal(0,10);
sigma_disc ~ normal(0,1);
discriminativeness ~ normal(mu_disc,sigma_disc);
status_effect ~ normal(0,2);
a_severity ~ normal(0,5);
epsilon ~ normal(0,4);
y ~ bernoulli_logit( (discriminativeness[ii] .* severity[jj]) - difficulty[ii]);
}
This code runs reasonably fast and doesn’t give me any warnings, although there’s a lot of uncertainty in the estimates.
The distribution of n_eff values for all the paramaters look like this:
However when I try to model average item difficulty as a hyperparameter (replacing difficulty ~ normal(0,sigma_difficulty);
with difficulty ~ normal(mu_diff,sigma_difficulty);
), suddenly the n_eff for all the item I
difficulty and person J
severity parameters drops by a factor of greater than 10 (e.g., from 765 to 37 on 2000 samples).
The chains for difficulty and severity parameters suddenly look terrible (they look fine in the previous model).
I am wondering if anyone might have an idea what’s going on / a solution to this?
The stan code with mu difficulty looks like this:
data{
int<lower=1> I; // # of questions
int<lower=1> J; // # of persons
int<lower=1> N; // # of observations
int<lower=1> K; // # of diagnostic groups
int<lower=1, upper=I> ii[N]; // question for observation n
int<lower=1, upper=J> jj[N]; // person for n
int<lower=0, upper=1> y[N]; // response for n
int<lower=1, upper=K> status[J]; // diagnostic status for person J
}
parameters {
vector[I] difficulty; // 'difficulty' for item i
vector[I] discriminativeness; // discrimination for item i
real mu_disc; // average item discrimination
real<lower=0> sigma_disc; // sd for item discrimiation
real mu_diff; // average item difficulty
real<lower=0> sigma_difficulty; // sd for item difficulty
real a_severity; // severity intercept (like 'ability' in standard IRT models)
vector[K] status_effect; // effect of diagnosis on severity
vector[J] epsilon; // severity for person j
}
transformed parameters {
vector[J] severity;
for (j in 1:J){
severity[j] = a_severity + status_effect[status[j]] + epsilon[j];
}
}
model {
mu_diff ~ normal(0,10);
sigma_difficulty ~ normal(0,1);
difficulty ~ normal(mu_diff,sigma_difficulty);
mu_disc ~ normal(0,10);
sigma_disc ~ normal(0,1);
discriminativeness ~ normal(mu_disc,sigma_disc);
status_effect ~ normal(0,2);
a_severity ~ normal(0,5);
epsilon ~ normal(0,4);
y ~ bernoulli_logit( (discriminativeness[ii] .* severity[jj]) - difficulty[ii]);
}
Thank you very much!