reports of new problems with clang++ compiler with latest release of Big Sur -
also a different problem - cannot recreate: Make build stuck at Entering Directory
if anyone can help either problem, greatly appreciated.
reports of new problems with clang++ compiler with latest release of Big Sur -
also a different problem - cannot recreate: Make build stuck at Entering Directory
if anyone can help either problem, greatly appreciated.
Mitzi I’ve just ran rstan
with the example(stan_model)
stuff. I am running the latest R 4.1.0 alpha from the mac.r-project.org site for the Mac ARM architecture.
R version 4.1.0 alpha (2021-04-26 r80229)
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
Natural language support but running in an English locale
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library(rstan)
Loading required package: StanHeaders
Loading required package: ggplot2
rstan (Version 2.21.2, GitRev: 2e1f913d3ca3)
For execution on a local, multicore CPU with excess RAM we recommend calling
options(mc.cores = parallel::detectCores()).
To avoid recompilation of unchanged Stan programs, we recommend calling
rstan_options(auto_write = TRUE)
> example(stan_model, package = "rstan", run.dontrun = TRUE)
stn_md> stancode <- 'data {real y_mean;} parameters {real y;} model {y ~ normal(y_mean,1);}'
stn_md> mod <- stan_model(model_code = stancode, verbose = TRUE)
TRANSLATING MODEL '16a540c6086086816528e4524def24d9' FROM Stan CODE TO C++ CODE NOW.
successful in parsing the Stan model '16a540c6086086816528e4524def24d9'.
COMPILING THE C++ CODE FOR MODEL '16a540c6086086816528e4524def24d9' NOW.
OS: aarch64, darwin20; rstan: 2.21.2; Rcpp: 1.0.6; inline: 0.3.17
>> setting environment variables:
PKG_LIBS = '/Library/Frameworks/R.framework/Versions/4.1-arm64/Resources/library/rstan/lib//libStanServices.a' -L'/Library/Frameworks/R.framework/Versions/4.1-arm64/Resources/library/StanHeaders/lib/' -lStanHeaders -L'/Library/Frameworks/R.framework/Versions/4.1-arm64/Resources/library/RcppParallel/lib/' -ltbb -ltbbmalloc -ltbbmalloc_proxy
PKG_CPPFLAGS = -I"/Library/Frameworks/R.framework/Versions/4.1-arm64/Resources/library/Rcpp/include/" -I"/Library/Frameworks/R.framework/Versions/4.1-arm64/Resources/library/RcppEigen/include/" -I"/Library/Frameworks/R.framework/Versions/4.1-arm64/Resources/library/RcppEigen/include/unsupported" -I"/Library/Frameworks/R.framework/Versions/4.1-arm64/Resources/library/BH/include" -I"/Library/Frameworks/R.framework/Versions/4.1-arm64/Resources/library/StanHeaders/include/src/" -I"/Library/Frameworks/R.framework/Versions/4.1-arm64/Resources/library/StanHeaders/include/" -I"/Library/Frameworks/R.framework/Versions/4.1-arm64/Resources/library/RcppParallel/include/" -I"/Library/Frameworks/R.framework/Versions/4.1-arm64/Resources/library/rstan/include" -DEIGEN_NO_DEBUG -DBOOST_DISABLE_ASSERTS -DBOOST_PENDING_INTEGER_LOG2_HPP -DSTAN_THREADS -DBOOST_NO_AUTO_PTR -include '/Library/Frameworks/R.framework/Versions/4.1-arm64/Resources/library/StanHeaders/include/stan/math/prim/mat/fun/Eigen.hpp' -D_REENTRANT -DRCPP_PARALLEL_USE_TBB=1
>> Program source :
1 :
2 : // includes from the plugin
3 : // [[Rcpp::plugins(cpp14)]]
4 :
5 :
6 : // user includes
7 : #include <Rcpp.h>
8 : #include <rstan/io/rlist_ref_var_context.hpp>
9 : #include <rstan/io/r_ostream.hpp>
10 : #include <rstan/stan_args.hpp>
11 : #include <boost/integer/integer_log2.hpp>
12 : // Code generated by Stan version 2.21.0
13 :
14 : #include <stan/model/model_header.hpp>
15 :
16 : namespace model17320678c57b_16a540c6086086816528e4524def24d9_namespace {
17 :
18 : using std::istream;
19 : using std::string;
20 : using std::stringstream;
21 : using std::vector;
22 : using stan::io::dump;
23 : using stan::math::lgamma;
24 : using stan::model::prob_grad;
25 : using namespace stan::math;
26 :
27 : static int current_statement_begin__;
28 :
29 : stan::io::program_reader prog_reader__() {
30 : stan::io::program_reader reader;
31 : reader.add_event(0, 0, "start", "model17320678c57b_16a540c6086086816528e4524def24d9");
32 : reader.add_event(3, 1, "end", "model17320678c57b_16a540c6086086816528e4524def24d9");
33 : return reader;
34 : }
35 :
36 : class model17320678c57b_16a540c6086086816528e4524def24d9
37 : : public stan::model::model_base_crtp<model17320678c57b_16a540c6086086816528e4524def24d9> {
38 : private:
39 : double y_mean;
40 : public:
41 : model17320678c57b_16a540c6086086816528e4524def24d9(rstan::io::rlist_ref_var_context& context__,
42 : std::ostream* pstream__ = 0)
43 : : model_base_crtp(0) {
44 : ctor_body(context__, 0, pstream__);
45 : }
46 :
47 : model17320678c57b_16a540c6086086816528e4524def24d9(stan::io::var_context& context__,
48 : unsigned int random_seed__,
49 : std::ostream* pstream__ = 0)
50 : : model_base_crtp(0) {
51 : ctor_body(context__, random_seed__, pstream__);
52 : }
53 :
54 : void ctor_body(stan::io::var_context& context__,
55 : unsigned int random_seed__,
56 : std::ostream* pstream__) {
57 : typedef double local_scalar_t__;
58 :
59 : boost::ecuyer1988 base_rng__ =
60 : stan::services::util::create_rng(random_seed__, 0);
61 : (void) base_rng__; // suppress unused var warning
62 :
63 : current_statement_begin__ = -1;
64 :
65 : static const char* function__ = "model17320678c57b_16a540c6086086816528e4524def24d9_namespace::model17320678c57b_16a540c6086086816528e4524def24d9";
66 : (void) function__; // dummy to suppress unused var warning
67 : size_t pos__;
68 : (void) pos__; // dummy to suppress unused var warning
69 : std::vector<int> vals_i__;
70 : std::vector<double> vals_r__;
71 : local_scalar_t__ DUMMY_VAR__(std::numeric_limits<double>::quiet_NaN());
72 : (void) DUMMY_VAR__; // suppress unused var warning
73 :
74 : try {
75 : // initialize data block variables from context__
76 : current_statement_begin__ = 1;
77 : context__.validate_dims("data initialization", "y_mean", "double", context__.to_vec());
78 : y_mean = double(0);
79 : vals_r__ = context__.vals_r("y_mean");
80 : pos__ = 0;
81 : y_mean = vals_r__[pos__++];
82 :
83 :
84 : // initialize transformed data variables
85 : // execute transformed data statements
86 :
87 : // validate transformed data
88 :
89 : // validate, set parameter ranges
90 : num_params_r__ = 0U;
91 : param_ranges_i__.clear();
92 : current_statement_begin__ = 1;
93 : num_params_r__ += 1;
94 : } catch (const std::exception& e) {
95 : stan::lang::rethrow_located(e, current_statement_begin__, prog_reader__());
96 : // Next line prevents compiler griping about no return
97 : throw std::runtime_error("*** IF YOU SEE THIS, PLEASE REPORT A BUG ***");
98 : }
99 : }
100 :
101 : ~model17320678c57b_16a540c6086086816528e4524def24d9() { }
102 :
103 :
104 : void transform_inits(const stan::io::var_context& context__,
105 : std::vector<int>& params_i__,
106 : std::vector<double>& params_r__,
107 : std::ostream* pstream__) const {
108 : typedef double local_scalar_t__;
109 : stan::io::writer<double> writer__(params_r__, params_i__);
110 : size_t pos__;
111 : (void) pos__; // dummy call to supress warning
112 : std::vector<double> vals_r__;
113 : std::vector<int> vals_i__;
114 :
115 : current_statement_begin__ = 1;
116 : if (!(context__.contains_r("y")))
117 : stan::lang::rethrow_located(std::runtime_error(std::string("Variable y missing")), current_statement_begin__, prog_reader__());
118 : vals_r__ = context__.vals_r("y");
119 : pos__ = 0U;
120 : context__.validate_dims("parameter initialization", "y", "double", context__.to_vec());
121 : double y(0);
122 : y = vals_r__[pos__++];
123 : try {
124 : writer__.scalar_unconstrain(y);
125 : } catch (const std::exception& e) {
126 : stan::lang::rethrow_located(std::runtime_error(std::string("Error transforming variable y: ") + e.what()), current_statement_begin__, prog_reader__());
127 : }
128 :
129 : params_r__ = writer__.data_r();
130 : params_i__ = writer__.data_i();
131 : }
132 :
133 : void transform_inits(const stan::io::var_context& context,
134 : Eigen::Matrix<double, Eigen::Dynamic, 1>& params_r,
135 : std::ostream* pstream__) const {
136 : std::vector<double> params_r_vec;
137 : std::vector<int> params_i_vec;
138 : transform_inits(context, params_i_vec, params_r_vec, pstream__);
139 : params_r.resize(params_r_vec.size());
140 : for (int i = 0; i < params_r.size(); ++i)
141 : params_r(i) = params_r_vec[i];
142 : }
143 :
144 :
145 : template <bool propto__, bool jacobian__, typename T__>
146 : T__ log_prob(std::vector<T__>& params_r__,
147 : std::vector<int>& params_i__,
148 : std::ostream* pstream__ = 0) const {
149 :
150 : typedef T__ local_scalar_t__;
151 :
152 : local_scalar_t__ DUMMY_VAR__(std::numeric_limits<double>::quiet_NaN());
153 : (void) DUMMY_VAR__; // dummy to suppress unused var warning
154 :
155 : T__ lp__(0.0);
156 : stan::math::accumulator<T__> lp_accum__;
157 : try {
158 : stan::io::reader<local_scalar_t__> in__(params_r__, params_i__);
159 :
160 : // model parameters
161 : current_statement_begin__ = 1;
162 : local_scalar_t__ y;
163 : (void) y; // dummy to suppress unused var warning
164 : if (jacobian__)
165 : y = in__.scalar_constrain(lp__);
166 : else
167 : y = in__.scalar_constrain();
168 :
169 : // model body
170 :
171 : current_statement_begin__ = 1;
172 : lp_accum__.add(normal_log<propto__>(y, y_mean, 1));
173 :
174 : } catch (const std::exception& e) {
175 : stan::lang::rethrow_located(e, current_statement_begin__, prog_reader__());
176 : // Next line prevents compiler griping about no return
177 : throw std::runtime_error("*** IF YOU SEE THIS, PLEASE REPORT A BUG ***");
178 : }
179 :
180 : lp_accum__.add(lp__);
181 : return lp_accum__.sum();
182 :
183 : } // log_prob()
184 :
185 : template <bool propto, bool jacobian, typename T_>
186 : T_ log_prob(Eigen::Matrix<T_,Eigen::Dynamic,1>& params_r,
187 : std::ostream* pstream = 0) const {
188 : std::vector<T_> vec_params_r;
189 : vec_params_r.reserve(params_r.size());
190 : for (int i = 0; i < params_r.size(); ++i)
191 : vec_params_r.push_back(params_r(i));
192 : std::vector<int> vec_params_i;
193 : return log_prob<propto,jacobian,T_>(vec_params_r, vec_params_i, pstream);
194 : }
195 :
196 :
197 : void get_param_names(std::vector<std::string>& names__) const {
198 : names__.resize(0);
199 : names__.push_back("y");
200 : }
201 :
202 :
203 : void get_dims(std::vector<std::vector<size_t> >& dimss__) const {
204 : dimss__.resize(0);
205 : std::vector<size_t> dims__;
206 : dims__.resize(0);
207 : dimss__.push_back(dims__);
208 : }
209 :
210 : template <typename RNG>
211 : void write_array(RNG& base_rng__,
212 : std::vector<double>& params_r__,
213 : std::vector<int>& params_i__,
214 : std::vector<double>& vars__,
215 : bool include_tparams__ = true,
216 : bool include_gqs__ = true,
217 : std::ostream* pstream__ = 0) const {
218 : typedef double local_scalar_t__;
219 :
220 : vars__.resize(0);
221 : stan::io::reader<local_scalar_t__> in__(params_r__, params_i__);
222 : static const char* function__ = "model17320678c57b_16a540c6086086816528e4524def24d9_namespace::write_array";
223 : (void) function__; // dummy to suppress unused var warning
224 :
225 : // read-transform, write parameters
226 : double y = in__.scalar_constrain();
227 : vars__.push_back(y);
228 :
229 : double lp__ = 0.0;
230 : (void) lp__; // dummy to suppress unused var warning
231 : stan::math::accumulator<double> lp_accum__;
232 :
233 : local_scalar_t__ DUMMY_VAR__(std::numeric_limits<double>::quiet_NaN());
234 : (void) DUMMY_VAR__; // suppress unused var warning
235 :
236 : if (!include_tparams__ && !include_gqs__) return;
237 :
238 : try {
239 : if (!include_gqs__ && !include_tparams__) return;
240 : if (!include_gqs__) return;
241 : } catch (const std::exception& e) {
242 : stan::lang::rethrow_located(e, current_statement_begin__, prog_reader__());
243 : // Next line prevents compiler griping about no return
244 : throw std::runtime_error("*** IF YOU SEE THIS, PLEASE REPORT A BUG ***");
245 : }
246 : }
247 :
248 : template <typename RNG>
249 : void write_array(RNG& base_rng,
250 : Eigen::Matrix<double,Eigen::Dynamic,1>& params_r,
251 : Eigen::Matrix<double,Eigen::Dynamic,1>& vars,
252 : bool include_tparams = true,
253 : bool include_gqs = true,
254 : std::ostream* pstream = 0) const {
255 : std::vector<double> params_r_vec(params_r.size());
256 : for (int i = 0; i < params_r.size(); ++i)
257 : params_r_vec[i] = params_r(i);
258 : std::vector<double> vars_vec;
259 : std::vector<int> params_i_vec;
260 : write_array(base_rng, params_r_vec, params_i_vec, vars_vec, include_tparams, include_gqs, pstream);
261 : vars.resize(vars_vec.size());
262 : for (int i = 0; i < vars.size(); ++i)
263 : vars(i) = vars_vec[i];
264 : }
265 :
266 : std::string model_name() const {
267 : return "model17320678c57b_16a540c6086086816528e4524def24d9";
268 : }
269 :
270 :
271 : void constrained_param_names(std::vector<std::string>& param_names__,
272 : bool include_tparams__ = true,
273 : bool include_gqs__ = true) const {
274 : std::stringstream param_name_stream__;
275 : param_name_stream__.str(std::string());
276 : param_name_stream__ << "y";
277 : param_names__.push_back(param_name_stream__.str());
278 :
279 : if (!include_gqs__ && !include_tparams__) return;
280 :
281 : if (include_tparams__) {
282 : }
283 :
284 : if (!include_gqs__) return;
285 : }
286 :
287 :
288 : void unconstrained_param_names(std::vector<std::string>& param_names__,
289 : bool include_tparams__ = true,
290 : bool include_gqs__ = true) const {
291 : std::stringstream param_name_stream__;
292 : param_name_stream__.str(std::string());
293 : param_name_stream__ << "y";
294 : param_names__.push_back(param_name_stream__.str());
295 :
296 : if (!include_gqs__ && !include_tparams__) return;
297 :
298 : if (include_tparams__) {
299 : }
300 :
301 : if (!include_gqs__) return;
302 : }
303 :
304 : }; // model
305 :
306 : } // namespace
307 :
308 : typedef model17320678c57b_16a540c6086086816528e4524def24d9_namespace::model17320678c57b_16a540c6086086816528e4524def24d9 stan_model;
309 :
310 : #ifndef USING_R
311 :
312 : stan::model::model_base& new_model(
313 : stan::io::var_context& data_context,
314 : unsigned int seed,
315 : std::ostream* msg_stream) {
316 : stan_model* m = new stan_model(data_context, seed, msg_stream);
317 : return *m;
318 : }
319 :
320 : #endif
321 :
322 :
323 :
324 : #include <rstan_next/stan_fit.hpp>
325 :
326 : struct stan_model_holder {
327 : stan_model_holder(rstan::io::rlist_ref_var_context rcontext,
328 : unsigned int random_seed)
329 : : rcontext_(rcontext), random_seed_(random_seed)
330 : {
331 : }
332 :
333 : //stan::math::ChainableStack ad_stack;
334 : rstan::io::rlist_ref_var_context rcontext_;
335 : unsigned int random_seed_;
336 : };
337 :
338 : Rcpp::XPtr<stan::model::model_base> model_ptr(stan_model_holder* smh) {
339 : Rcpp::XPtr<stan::model::model_base> model_instance(new stan_model(smh->rcontext_, smh->random_seed_), true);
340 : return model_instance;
341 : }
342 :
343 : Rcpp::XPtr<rstan::stan_fit_base> fit_ptr(stan_model_holder* smh) {
344 : return Rcpp::XPtr<rstan::stan_fit_base>(new rstan::stan_fit(model_ptr(smh), smh->random_seed_), true);
345 : }
346 :
347 : std::string model_name(stan_model_holder* smh) {
348 : return model_ptr(smh).get()->model_name();
349 : }
350 :
351 : RCPP_MODULE(stan_fit4model17320678c57b_16a540c6086086816528e4524def24d9_mod){
352 : Rcpp::class_<stan_model_holder>("stan_fit4model17320678c57b_16a540c6086086816528e4524def24d9")
353 : .constructor<rstan::io::rlist_ref_var_context, unsigned int>()
354 : .method("model_ptr", &model_ptr)
355 : .method("fit_ptr", &fit_ptr)
356 : .method("model_name", &model_name)
357 : ;
358 : }
359 :
360 :
361 : // declarations
362 : extern "C" {
363 : SEXP file173201a7ce1e2( ) ;
364 : }
365 :
366 : // definition
367 : SEXP file173201a7ce1e2() {
368 : return Rcpp::wrap("16a540c6086086816528e4524def24d9");
369 : }
make cmd is
make -f '/Library/Frameworks/R.framework/Resources/etc/Makeconf' -f '/Library/Frameworks/R.framework/Resources/share/make/shlib.mk' -f '/Users/storopoli/.R/Makevars' CXX='$(CXX14) $(CXX14STD)' CXXFLAGS='$(CXX14FLAGS)' CXXPICFLAGS='$(CXX14PICFLAGS)' SHLIB_LDFLAGS='$(SHLIB_CXX14LDFLAGS)' SHLIB_LD='$(SHLIB_CXX14LD)' SHLIB='file173201a7ce1e2.so' OBJECTS='file173201a7ce1e2.o'
make would use
clang++ -arch arm64 -std=c++14 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG -I"/Library/Frameworks/R.framework/Versions/4.1-arm64/Resources/library/Rcpp/include/" -I"/Library/Frameworks/R.framework/Versions/4.1-arm64/Resources/library/RcppEigen/include/" -I"/Library/Frameworks/R.framework/Versions/4.1-arm64/Resources/library/RcppEigen/include/unsupported" -I"/Library/Frameworks/R.framework/Versions/4.1-arm64/Resources/library/BH/include" -I"/Library/Frameworks/R.framework/Versions/4.1-arm64/Resources/library/StanHeaders/include/src/" -I"/Library/Frameworks/R.framework/Versions/4.1-arm64/Resources/library/StanHeaders/include/" -I"/Library/Frameworks/R.framework/Versions/4.1-arm64/Resources/library/RcppParallel/include/" -I"/Library/Frameworks/R.framework/Versions/4.1-arm64/Resources/library/rstan/include" -DEIGEN_NO_DEBUG -DBOOST_DISABLE_ASSERTS -DBOOST_PENDING_INTEGER_LOG2_HPP -DSTAN_THREADS -DBOOST_NO_AUTO_PTR -include '/Library/Frameworks/R.framework/Versions/4.1-arm64/Resources/library/StanHeaders/include/stan/math/prim/mat/fun/Eigen.hpp' -D_REENTRANT -DRCPP_PARALLEL_USE_TBB=1 -I/opt/R/arm64/include -fPIC -falign-functions=64 -Wall -g -O2 -c file173201a7ce1e2.cpp -o file173201a7ce1e2.o
if test "zfile173201a7ce1e2.o" != "z"; then \
echo clang++ -arch arm64 -std=c++14 -dynamiclib -Wl,-headerpad_max_install_names -undefined dynamic_lookup -single_module -multiply_defined suppress -L"/Library/Frameworks/R.framework/Resources/lib" -L/opt/R/arm64/lib -o file173201a7ce1e2.so file173201a7ce1e2.o '/Library/Frameworks/R.framework/Versions/4.1-arm64/Resources/library/rstan/lib//libStanServices.a' -L'/Library/Frameworks/R.framework/Versions/4.1-arm64/Resources/library/StanHeaders/lib/' -lStanHeaders -L'/Library/Frameworks/R.framework/Versions/4.1-arm64/Resources/library/RcppParallel/lib/' -ltbb -ltbbmalloc -ltbbmalloc_proxy -F/Library/Frameworks/R.framework/.. -framework R -Wl,-framework -Wl,CoreFoundation; \
clang++ -arch arm64 -std=c++14 -dynamiclib -Wl,-headerpad_max_install_names -undefined dynamic_lookup -single_module -multiply_defined suppress -L"/Library/Frameworks/R.framework/Resources/lib" -L/opt/R/arm64/lib -o file173201a7ce1e2.so file173201a7ce1e2.o '/Library/Frameworks/R.framework/Versions/4.1-arm64/Resources/library/rstan/lib//libStanServices.a' -L'/Library/Frameworks/R.framework/Versions/4.1-arm64/Resources/library/StanHeaders/lib/' -lStanHeaders -L'/Library/Frameworks/R.framework/Versions/4.1-arm64/Resources/library/RcppParallel/lib/' -ltbb -ltbbmalloc -ltbbmalloc_proxy -F/Library/Frameworks/R.framework/.. -framework R -Wl,-framework -Wl,CoreFoundation; \
fi
stn_md> fit <- sampling(mod, data = list(y_mean = 0))
starting worker pid=95285 on localhost:11912 at 12:31:40.329
starting worker pid=95303 on localhost:11912 at 12:31:40.536
starting worker pid=95321 on localhost:11912 at 12:31:40.759
starting worker pid=95339 on localhost:11912 at 12:31:40.968
SAMPLING FOR MODEL '16a540c6086086816528e4524def24d9' NOW (CHAIN 1).
Chain 1:
Chain 1: Gradient evaluation took 6e-06 seconds
Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.06 seconds.
Chain 1: Adjust your expectations accordingly!
Chain 1:
Chain 1:
Chain 1: Iteration: 1 / 2000 [ 0%] (Warmup)
Chain 1: Iteration: 200 / 2000 [ 10%] (Warmup)
Chain 1: Iteration: 400 / 2000 [ 20%] (Warmup)
Chain 1: Iteration: 600 / 2000 [ 30%] (Warmup)
Chain 1: Iteration: 800 / 2000 [ 40%] (Warmup)
Chain 1: Iteration: 1000 / 2000 [ 50%] (Warmup)
Chain 1: Iteration: 1001 / 2000 [ 50%] (Sampling)
Chain 1: Iteration: 1200 / 2000 [ 60%] (Sampling)
Chain 1: Iteration: 1400 / 2000 [ 70%] (Sampling)
Chain 1: Iteration: 1600 / 2000 [ 80%] (Sampling)
Chain 1: Iteration: 1800 / 2000 [ 90%] (Sampling)
Chain 1: Iteration: 2000 / 2000 [100%] (Sampling)
Chain 1:
Chain 1: Elapsed Time: 0.003566 seconds (Warm-up)
Chain 1: 0.003553 seconds (Sampling)
Chain 1: 0.007119 seconds (Total)
Chain 1:
SAMPLING FOR MODEL '16a540c6086086816528e4524def24d9' NOW (CHAIN 2).
Chain 2:
Chain 2: Gradient evaluation took 6e-06 seconds
Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.06 seconds.
Chain 2: Adjust your expectations accordingly!
Chain 2:
Chain 2:
Chain 2: Iteration: 1 / 2000 [ 0%] (Warmup)
Chain 2: Iteration: 200 / 2000 [ 10%] (Warmup)
Chain 2: Iteration: 400 / 2000 [ 20%] (Warmup)
Chain 2: Iteration: 600 / 2000 [ 30%] (Warmup)
Chain 2: Iteration: 800 / 2000 [ 40%] (Warmup)
Chain 2: Iteration: 1000 / 2000 [ 50%] (Warmup)
Chain 2: Iteration: 1001 / 2000 [ 50%] (Sampling)
Chain 2: Iteration: 1200 / 2000 [ 60%] (Sampling)
Chain 2: Iteration: 1400 / 2000 [ 70%] (Sampling)
Chain 2: Iteration: 1600 / 2000 [ 80%] (Sampling)
Chain 2: Iteration: 1800 / 2000 [ 90%] (Sampling)
Chain 2: Iteration: 2000 / 2000 [100%] (Sampling)
Chain 2:
Chain 2: Elapsed Time: 0.003513 seconds (Warm-up)
Chain 2: 0.003425 seconds (Sampling)
Chain 2: 0.006938 seconds (Total)
Chain 2:
SAMPLING FOR MODEL '16a540c6086086816528e4524def24d9' NOW (CHAIN 3).
Chain 3:
Chain 3: Gradient evaluation took 4e-06 seconds
Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0.04 seconds.
Chain 3: Adjust your expectations accordingly!
Chain 3:
Chain 3:
Chain 3: Iteration: 1 / 2000 [ 0%] (Warmup)
Chain 3: Iteration: 200 / 2000 [ 10%] (Warmup)
Chain 3: Iteration: 400 / 2000 [ 20%] (Warmup)
Chain 3: Iteration: 600 / 2000 [ 30%] (Warmup)
Chain 3: Iteration: 800 / 2000 [ 40%] (Warmup)
Chain 3: Iteration: 1000 / 2000 [ 50%] (Warmup)
Chain 3: Iteration: 1001 / 2000 [ 50%] (Sampling)
Chain 3: Iteration: 1200 / 2000 [ 60%] (Sampling)
Chain 3: Iteration: 1400 / 2000 [ 70%] (Sampling)
Chain 3: Iteration: 1600 / 2000 [ 80%] (Sampling)
Chain 3: Iteration: 1800 / 2000 [ 90%] (Sampling)
Chain 3: Iteration: 2000 / 2000 [100%] (Sampling)
Chain 3:
Chain 3: Elapsed Time: 0.003681 seconds (Warm-up)
Chain 3: 0.003235 seconds (Sampling)
Chain 3: 0.006916 seconds (Total)
Chain 3:
SAMPLING FOR MODEL '16a540c6086086816528e4524def24d9' NOW (CHAIN 4).
Chain 4:
Chain 4: Gradient evaluation took 4e-06 seconds
Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0.04 seconds.
Chain 4: Adjust your expectations accordingly!
Chain 4:
Chain 4:
Chain 4: Iteration: 1 / 2000 [ 0%] (Warmup)
Chain 4: Iteration: 200 / 2000 [ 10%] (Warmup)
Chain 4: Iteration: 400 / 2000 [ 20%] (Warmup)
Chain 4: Iteration: 600 / 2000 [ 30%] (Warmup)
Chain 4: Iteration: 800 / 2000 [ 40%] (Warmup)
Chain 4: Iteration: 1000 / 2000 [ 50%] (Warmup)
Chain 4: Iteration: 1001 / 2000 [ 50%] (Sampling)
Chain 4: Iteration: 1200 / 2000 [ 60%] (Sampling)
Chain 4: Iteration: 1400 / 2000 [ 70%] (Sampling)
Chain 4: Iteration: 1600 / 2000 [ 80%] (Sampling)
Chain 4: Iteration: 1800 / 2000 [ 90%] (Sampling)
Chain 4: Iteration: 2000 / 2000 [100%] (Sampling)
Chain 4:
Chain 4: Elapsed Time: 0.003264 seconds (Warm-up)
Chain 4: 0.003079 seconds (Sampling)
Chain 4: 0.006343 seconds (Total)
Chain 4:
stn_md> fit2 <- sampling(mod, data = list(y_mean = 5))
starting worker pid=95364 on localhost:11912 at 12:31:42.936
starting worker pid=95383 on localhost:11912 at 12:31:43.155
starting worker pid=95401 on localhost:11912 at 12:31:43.364
starting worker pid=95419 on localhost:11912 at 12:31:43.577
SAMPLING FOR MODEL '16a540c6086086816528e4524def24d9' NOW (CHAIN 1).
Chain 1:
Chain 1: Gradient evaluation took 5e-06 seconds
Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.05 seconds.
Chain 1: Adjust your expectations accordingly!
Chain 1:
Chain 1:
Chain 1: Iteration: 1 / 2000 [ 0%] (Warmup)
Chain 1: Iteration: 200 / 2000 [ 10%] (Warmup)
Chain 1: Iteration: 400 / 2000 [ 20%] (Warmup)
Chain 1: Iteration: 600 / 2000 [ 30%] (Warmup)
Chain 1: Iteration: 800 / 2000 [ 40%] (Warmup)
Chain 1: Iteration: 1000 / 2000 [ 50%] (Warmup)
Chain 1: Iteration: 1001 / 2000 [ 50%] (Sampling)
Chain 1: Iteration: 1200 / 2000 [ 60%] (Sampling)
Chain 1: Iteration: 1400 / 2000 [ 70%] (Sampling)
Chain 1: Iteration: 1600 / 2000 [ 80%] (Sampling)
Chain 1: Iteration: 1800 / 2000 [ 90%] (Sampling)
Chain 1: Iteration: 2000 / 2000 [100%] (Sampling)
Chain 1:
Chain 1: Elapsed Time: 0.00335 seconds (Warm-up)
Chain 1: 0.003263 seconds (Sampling)
Chain 1: 0.006613 seconds (Total)
Chain 1:
SAMPLING FOR MODEL '16a540c6086086816528e4524def24d9' NOW (CHAIN 2).
Chain 2:
Chain 2: Gradient evaluation took 4e-06 seconds
Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.04 seconds.
Chain 2: Adjust your expectations accordingly!
Chain 2:
Chain 2:
Chain 2: Iteration: 1 / 2000 [ 0%] (Warmup)
Chain 2: Iteration: 200 / 2000 [ 10%] (Warmup)
Chain 2: Iteration: 400 / 2000 [ 20%] (Warmup)
Chain 2: Iteration: 600 / 2000 [ 30%] (Warmup)
Chain 2: Iteration: 800 / 2000 [ 40%] (Warmup)
Chain 2: Iteration: 1000 / 2000 [ 50%] (Warmup)
Chain 2: Iteration: 1001 / 2000 [ 50%] (Sampling)
Chain 2: Iteration: 1200 / 2000 [ 60%] (Sampling)
Chain 2: Iteration: 1400 / 2000 [ 70%] (Sampling)
Chain 2: Iteration: 1600 / 2000 [ 80%] (Sampling)
Chain 2: Iteration: 1800 / 2000 [ 90%] (Sampling)
Chain 2: Iteration: 2000 / 2000 [100%] (Sampling)
Chain 2:
Chain 2: Elapsed Time: 0.003559 seconds (Warm-up)
Chain 2: 0.003296 seconds (Sampling)
Chain 2: 0.006855 seconds (Total)
Chain 2:
SAMPLING FOR MODEL '16a540c6086086816528e4524def24d9' NOW (CHAIN 3).
Chain 3:
Chain 3: Gradient evaluation took 5e-06 seconds
Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0.05 seconds.
Chain 3: Adjust your expectations accordingly!
Chain 3:
Chain 3:
Chain 3: Iteration: 1 / 2000 [ 0%] (Warmup)
Chain 3: Iteration: 200 / 2000 [ 10%] (Warmup)
Chain 3: Iteration: 400 / 2000 [ 20%] (Warmup)
Chain 3: Iteration: 600 / 2000 [ 30%] (Warmup)
Chain 3: Iteration: 800 / 2000 [ 40%] (Warmup)
Chain 3: Iteration: 1000 / 2000 [ 50%] (Warmup)
Chain 3: Iteration: 1001 / 2000 [ 50%] (Sampling)
Chain 3: Iteration: 1200 / 2000 [ 60%] (Sampling)
Chain 3: Iteration: 1400 / 2000 [ 70%] (Sampling)
Chain 3: Iteration: 1600 / 2000 [ 80%] (Sampling)
Chain 3: Iteration: 1800 / 2000 [ 90%] (Sampling)
Chain 3: Iteration: 2000 / 2000 [100%] (Sampling)
Chain 3:
Chain 3: Elapsed Time: 0.004006 seconds (Warm-up)
Chain 3: 0.003909 seconds (Sampling)
Chain 3: 0.007915 seconds (Total)
Chain 3:
SAMPLING FOR MODEL '16a540c6086086816528e4524def24d9' NOW (CHAIN 4).
Chain 4:
Chain 4: Gradient evaluation took 1.3e-05 seconds
Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0.13 seconds.
Chain 4: Adjust your expectations accordingly!
Chain 4:
Chain 4:
Chain 4: Iteration: 1 / 2000 [ 0%] (Warmup)
Chain 4: Iteration: 200 / 2000 [ 10%] (Warmup)
Chain 4: Iteration: 400 / 2000 [ 20%] (Warmup)
Chain 4: Iteration: 600 / 2000 [ 30%] (Warmup)
Chain 4: Iteration: 800 / 2000 [ 40%] (Warmup)
Chain 4: Iteration: 1000 / 2000 [ 50%] (Warmup)
Chain 4: Iteration: 1001 / 2000 [ 50%] (Sampling)
Chain 4: Iteration: 1200 / 2000 [ 60%] (Sampling)
Chain 4: Iteration: 1400 / 2000 [ 70%] (Sampling)
Chain 4: Iteration: 1600 / 2000 [ 80%] (Sampling)
Chain 4: Iteration: 1800 / 2000 [ 90%] (Sampling)
Chain 4: Iteration: 2000 / 2000 [100%] (Sampling)
Chain 4:
Chain 4: Elapsed Time: 0.004561 seconds (Warm-up)
Chain 4: 0.003347 seconds (Sampling)
Chain 4: 0.007908 seconds (Total)
Chain 4:
Here’s the output of sessionInfo()
:
> sessionInfo()
R version 4.1.0 alpha (2021-04-26 r80229)
Platform: aarch64-apple-darwin20 (64-bit)
Running under: macOS Big Sur 11.3.1
Matrix products: default
LAPACK: /Library/Frameworks/R.framework/Versions/4.1-arm64/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] rstan_2.21.2 ggplot2_3.3.3 StanHeaders_2.21.0-7
loaded via a namespace (and not attached):
[1] Rcpp_1.0.6 pillar_1.6.0 compiler_4.1.0 prettyunits_1.1.1 tools_4.1.0 pkgbuild_1.2.0
[7] jsonlite_1.7.2 lifecycle_1.0.0 tibble_3.1.1 gtable_0.3.0 pkgconfig_2.0.3 rlang_0.4.11
[13] DBI_1.1.1 cli_2.5.0 curl_4.3.1 parallel_4.1.0 xfun_0.22 loo_2.4.1
[19] gridExtra_2.3 withr_2.4.2 dplyr_1.0.6 knitr_1.33 generics_0.1.0 vctrs_0.3.8
[25] stats4_4.1.0 grid_4.1.0 tidyselect_1.1.1 glue_1.4.2 inline_0.3.17 R6_2.5.0
[31] processx_3.5.2 fansi_0.4.2 purrr_0.3.4 callr_3.7.0 magrittr_2.0.1 codetools_0.2-18
[37] matrixStats_0.58.0 scales_1.1.1 ps_1.6.0 ellipsis_0.3.2 assertthat_0.2.1 colorspace_2.0-1
[43] V8_3.4.2 utf8_1.2.1 RcppParallel_5.1.4 munsell_0.5.0 crayon_1.4.1