Log-likelihood NaN value

Dear Stan/Bayesian model experts,

I am using a prospect theory + drift diffusion model in Stan. I fit the model with 4 MCMC chains. The weird thing is one draw’s likelihood computed in the generated quantities block is NaN value, however, if i extract the parameter value of that draw and manually compute the likelihood in R instead of in stan, I found the log-likelihood value is normal (not NaN value). And all the other draws do not have this error. Here is the stan code:


When including Stan code in your post it really helps if you make it as readable as possible by using Stan code chunks (```stan) with clear spacing and indentation. For example, use

functions {
   real ddm_(real rt, real response, real v, real A, real z, real ndt){
     
     if (response == 2){
       return(wiener_lpdf(rt|A,ndt,z,v));
     }
     else{
       return(wiener_lpdf(rt|A,ndt,1-z,-v));
     }
   }
}

data {
  int<lower=1> ns; // subject number
  int<lower=1> nt; // trial number
  int value[ns, nt]; 
  int ratio[ns, nt]; 
  int choice[ns,nt]; 
  int sign[ns,nt];
  real rt[ns, nt]; 
  vector[ns] minrt;
}

parameters {
  vector[7] mu_pr; // group-level mean hyper parameter
  vector<lower=0>[7] sigma; // group-level standard deviation 
  vector[ns] alpha_raw;   
  vector[ns] tau_raw;
  vector[ns] eta_raw;
  vector[ns] A_raw;
  vector[ns] z_g_raw;
  vector[ns] z_l_raw;
  vector[ns] t0_raw;
}

transformed parameters {
  vector[ns] alpha; 
  vector[ns] tau;
  vector[ns] eta;
  vector[ns] A;
  vector[ns] t0;
  vector[ns] z_g;
  vector[ns] z_l;
  real drift[ns,nt];
  real z_t[ns,nt];
  real utility;

  // matt-trick
  alpha = exp(mu_pr[1] + sigma[1] * alpha_raw);
  tau = exp(mu_pr[2] + sigma[2] * tau_raw);
  eta = exp(mu_pr[3] + sigma[3] * eta_raw);
  A  = exp(mu_pr[4] + sigma[4] * A_raw);
  z_g = inv_logit(mu_pr[5] + sigma[5] * z_g_raw);
  z_l = inv_logit(mu_pr[6] + sigma[6] * z_l_raw);
  t0 = inv_logit(mu_pr[7] + sigma[7] * t0_raw) .* minrt;// avoid non-decision time > rt

  
   // subject loop
  for (i in 1:ns) {
    // trial loop
    for (t in 1:nt) {
      utility = .5 * sign[i,t] * pow((value[i,t] * ratio[i,t]), alpha[i]) - 
        sign[i,t] * pow(value[i,t],alpha[i]); 
      drift[i,t] = eta[i] * (2 * inv_logit(tau[i]*utility) - 1);
      z_t[i,t] = (sign[i,t]+1)/2 * z_g[i] - (sign[i,t]-1)/2 *z_l[i];
    } // end of trial loop
  } // end of subject loop
  
}

model {
  // hyper parameters
  mu_pr ~ std_normal();
  // Gelman recommend if the number of individual level is small, we should adopt a prior with a thinner tail like half-normal
  sigma  ~ normal(0,3); 
  //sigma ~ cauchy(0,3);

  // random effect parameters 
  alpha_raw ~ std_normal();
  tau_raw  ~ std_normal();
  eta_raw  ~ std_normal();
  A_raw  ~ std_normal();
  z_g_raw ~std_normal();
  z_l_raw ~std_normal();
  t0_raw ~ std_normal();
  
  for(i in 1:ns){
    for(t in 1:nt){
      target += ddm_(rt[i,t],choice[i,t],drift[i,t],A[i],z_t[i,t],t0[i]);
    }
  }
 
}

generated quantities {
  
  real log_lik[ns]; ## for model comparison
  

  { // local section, this saves time and space
    for (i in 1:ns) {
      log_lik[i] = 0;
      for (t in 1:nt) {
        log_lik[i] += ddm_(rt[i,t],choice[i,t],drift[i,t],A[i],z_t[i,t],t0[i]);
      } // end of i loop
   }
 }
}

here is the log-likelihood returned by stan:

And the log-likelihood computed with rtdists:

If even one value in that loop is NaN, the entire thing will be NaN. I suggest working backwards with print statements to see where the NaN value is coming from. When you pinpoint the source of the NaN value, you’ll have a much better idea what could be causing it in the code.

as I remember NaN values can be associated with arbitrarily small numbers, because it would be log(0) in this case, which would give NaN. So, it can be worthy to check, following @Corey.Plate advice, if there is such calculation and datapoint somewhere in the code