How to quantify the effects of moderate correlation (dependent variable and random intercept)?

Hello,

I have a dependent variable in my model that is moderately correlated (0.5) with the random intercept, and I’m wondering if there is a way to visualize or estimate how much of an effect this correlation has on my variable estimates, and on my model as a whole (how much of a problem would it be to leave both in the model?). I think this effect is called “bias”, so how would I estimate how much bias is in my random effect “s(fSite, bs = “re”)” when I include this covariate? I’m using the package mgcv in R.

Model without covariate in question “s(log_ratio_thal_halo)”:

> summary(mod_total)

Family: Negative Binomial(0.367) 
Link function: log 

Formula:
num ~ offset(log(area_sampled)) + te(CYR, Latitude, by = fSeason) + 
    fSeason + s(sal, bs = "ts") + s(DO, bs = "ts") + s(water_depth) + 
    s(total_sg) + s(fSite, bs = "re")

Parametric coefficients:
            Estimate Std. Error z value Pr(>|z|)    
(Intercept)  -3.4234     0.2014 -16.997  < 2e-16 ***
fSeasonWET    0.6605     0.1945   3.397 0.000682 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Approximate significance of smooth terms:
                                  edf Ref.df  Chi.sq  p-value    
te(CYR,Latitude):fSeasonDRY 6.189e+00  7.875  16.363  0.03584 *  
te(CYR,Latitude):fSeasonWET 1.283e+01 16.148  60.026 4.46e-06 ***
s(sal)                      5.711e-04  9.000   0.000  0.42844    
s(DO)                       5.783e-01  9.000   1.378  0.13680    
s(water_depth)              1.000e+00  1.001   0.000  0.99716    
s(total_sg)                 3.168e+00  3.995  16.760  0.00215 ** 
s(fSite)                    3.192e+01 46.000 109.113  < 2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

R-sq.(adj) =  0.137   Deviance explained = 43.4%
-REML = 846.75  Scale est. = 1         n = 1453


Model with covariate in question:

> summary(mod_ratio)

Family: Negative Binomial(0.388) 
Link function: log 

Formula:
num ~ offset(log(area_sampled)) + te(CYR, Latitude, by = fSeason) + 
    fSeason + s(sal, bs = "ts") + s(DO, bs = "ts") + s(water_depth) + 
    s(total_sg) + s(log_ratio_thal_halo) + s(fSite, bs = "re")

Parametric coefficients:
            Estimate Std. Error z value Pr(>|z|)    
(Intercept)  -3.4604     0.1844 -18.761  < 2e-16 ***
fSeasonWET    0.6796     0.1938   3.506 0.000455 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Approximate significance of smooth terms:
                                  edf Ref.df Chi.sq  p-value    
te(CYR,Latitude):fSeasonDRY 7.397e+00  9.668 17.891 0.049484 *  
te(CYR,Latitude):fSeasonWET 1.018e+01 12.815 51.548 4.72e-06 ***
s(sal)                      2.685e-04  9.000  0.000 0.636458    
s(DO)                       6.051e-01  9.000  1.523 0.122697    
s(water_depth)              1.000e+00  1.000  0.075 0.785044    
s(total_sg)                 3.320e+00  4.178 19.232 0.000904 ***
s(log_ratio_thal_halo)      5.095e+00  6.160 32.532 7.85e-06 ***
s(fSite)                    2.735e+01 46.000 71.174  < 2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

R-sq.(adj) =  0.125   Deviance explained = 44.6%
-REML = 839.33  Scale est. = 1         n = 1453

Non-linear correlation (concurvity) is about 0.5 between the two:

> concurvity(mod_ratio, full = FALSE)$estimate[ , (ncol(concurvity(mod_ratio, 

full = FALSE)$estimate) - 1):ncol(concurvity(mod_ratio, full = FALSE)$estimate)]
                            s(log_ratio_thal_halo)    s(fSite)
para                                  1.050603e-23 0.021373062
te(CYR,Latitude):fSeasonDRY           1.329285e-01 0.040720710
te(CYR,Latitude):fSeasonWET           1.328086e-01 0.046022044
s(sal)                                4.620769e-02 0.011098179
s(DO)                                 1.332674e-02 0.006498958
s(water_depth)                        7.796803e-03 0.010273864
s(total_sg)                           1.501585e-02 0.011513171
s(log_ratio_thal_halo)                1.000000e+00 0.032523922
s(fSite)                              4.931990e-01 1.000000000