I have a data set of counts of various bird species in three national parks. My aim is to see if they’re declining in any of those areas. The data is at a monthly resolution. I’m using brms
to fit a hierarchical model (I give some more detail of the model below*). I fit this model already but never included an autoregressive term which I’d like to include to see how it changes the estimates. I’m just not sure how to write it for my regression. Hope you can help.
brm(
AWB ~
ndate * NP + Season + CarcassPres +
(1 | NP / StandardTransect) +
offset(log(Tlength)),
family = negbinomial,
data = mydata,
chains = 4)
Here’s my data:
mydata <- structure(list(AWB = c(7, 66, 15, 44, 22, 60, 45, 32, 30, 33,
14, 0, 45, 39, 39, 24, 37, 66, 37, 60, 18, 3, 25, 13, 34, 38,
58, 0, 12, 6, 33, 2, 34, 18, 75, 20, 4, 9, 15, 4, 0, 21, 50,
24, 21, 9, 5, 87, 13, 43, 1, 19, 13, 1, 28, 56, 18, 42, 13, 2,
53, 16, 37, 51, 79, 5, 49, 11, 34, 91, 30, 2, 0, 15, 3, 57, 5,
18, 31, 14, 56, 72, 35, 94, 10, 45, 8, 29, 33, 34, 8, 53, 54,
24, 5, 21, 11, 27, 83, 23, 24, 4, 10, 13, 17, 11, 51, 6), ndate = c(0,
0, 0, 0, 0, 14, 14, 14, 14, 14, 14, 19, 19, 19, 19, 20, 20, 25,
25, 25, 25, 25, 25, 32, 32, 33, 33, 33, 33, 33, 38, 38, 38, 38,
38, 38, 39, 39, 39, 39, 39, 41, 41, 42, 42, 42, 42, 43, 43, 43,
44, 46, 46, 46, 46, 51, 51, 51, 51, 51, 51, 54, 54, 54, 55, 56,
56, 56, 58, 58, 61, 61, 61, 61, 61, 63, 63, 66, 66, 67, 67, 67,
68, 68, 68, 68, 68, 71, 72, 73, 78, 78, 79, 79, 89, 89, 89, 90,
90, 91, 91, 91, 96, 96, 96, 96, 97, 97), nyear = c(2013, 2013,
2013, 2013, 2013, 2014, 2014, 2014, 2014, 2014, 2014, 2015, 2015,
2015, 2015, 2015, 2015, 2015, 2015, 2015, 2015, 2015, 2015, 2016,
2016, 2016, 2016, 2016, 2016, 2016, 2016, 2016, 2016, 2016, 2016,
2016, 2016, 2016, 2016, 2016, 2016, 2017, 2017, 2017, 2017, 2017,
2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017,
2017, 2017, 2017, 2017, 2018, 2018, 2018, 2018, 2018, 2018, 2018,
2018, 2018, 2018, 2018, 2018, 2018, 2018, 2018, 2018, 2019, 2019,
2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019,
2020, 2020, 2020, 2020, 2021, 2021, 2021, 2021, 2021, 2021, 2021,
2021, 2021, 2021, 2021, 2021, 2021, 2021), NP = structure(c(1L,
1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L,
1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 3L, 3L,
2L, 2L, 2L, 3L, 3L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 3L, 3L,
3L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 1L, 1L, 3L, 3L, 2L, 2L, 2L,
1L, 1L, 3L, 3L, 3L, 2L, 2L, 2L, 3L, 3L, 1L), .Label = c("Katavi",
"Ruaha", "Selous"), class = "factor"), Season = c("Dry", "Dry",
"Dry", "Dry", "Dry", "Dry", "Dry", "Dry", "Dry", "Dry", "Dry",
"Wet", "Wet", "Wet", "Wet", "Wet", "Wet", "Dry", "Dry", "Dry",
"Dry", "Dry", "Dry", "Wet", "Wet", "Wet", "Wet", "Wet", "Wet",
"Wet", "Wet", "Dry", "Dry", "Dry", "Dry", "Dry", "Dry", "Dry",
"Dry", "Dry", "Dry", "Wet", "Wet", "Wet", "Wet", "Wet", "Wet",
"Wet", "Wet", "Wet", "Wet", "Dry", "Dry", "Dry", "Dry", "Dry",
"Dry", "Dry", "Dry", "Dry", "Dry", "Wet", "Wet", "Wet", "Wet",
"Wet", "Wet", "Wet", "Dry", "Dry", "Dry", "Wet", "Dry", "Dry",
"Dry", "Dry", "Dry", "Wet", "Wet", "Wet", "Wet", "Wet", "Wet",
"Wet", "Wet", "Wet", "Wet", "Dry", "Dry", "Dry", "Wet", "Wet",
"Wet", "Wet", "Wet", "Wet", "Wet", "Wet", "Wet", "Wet", "Wet",
"Wet", "Dry", "Dry", "Dry", "Dry", "Dry", "Dry"), CarcassPres = structure(c(1L,
1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L), .Label = c("0",
"1"), class = "factor"), StandardTransect = structure(c(4L, 3L,
1L, 5L, 7L, 5L, 1L, 8L, 6L, 4L, 3L, 8L, 5L, 6L, 1L, 4L, 3L, 4L,
3L, 5L, 1L, 8L, 6L, 8L, 6L, 5L, 1L, 8L, 6L, 1L, 5L, 5L, 1L, 6L,
4L, 3L, 8L, 6L, 5L, 1L, 8L, 4L, 3L, 5L, 1L, 8L, 6L, 5L, 1L, 6L,
8L, 5L, 1L, 8L, 6L, 4L, 3L, 5L, 1L, 8L, 6L, 3L, 4L, 10L, 2L,
1L, 5L, 6L, 2L, 10L, 5L, 8L, 8L, 1L, 6L, 3L, 4L, 4L, 3L, 9L,
2L, 10L, 5L, 1L, 7L, 5L, 7L, 2L, 10L, 9L, 4L, 3L, 10L, 2L, 5L,
1L, 7L, 4L, 3L, 2L, 10L, 9L, 5L, 7L, 1L, 2L, 9L, 4L), .Label = c("Jongomero",
"Kidai", "LakeChada", "LakeKatavi", "Lunda", "Magangwe", "Mbagi-Mdonya",
"Mpululu", "Msolwa", "Mtemere"), class = "factor"), Tlength = c(35.2,
86.7, 93, 75, 27.2, 74.4, 93, 10.3, 45.8, 35.2, 78.2, 10.3, 71,
45.8, 93, 35.2, 63.9, 35.2, 77.9, 86.6, 93, 10.3, 45.8, 10.3,
45.8, 68.9, 93, 10.3, 45.8, 93, 86.7, 90.5, 93, 45.8, 35.2, 81.6,
10.3, 45.8, 88.2, 93, 10.3, 35.2, 64.6, 82.3, 93, 10.3, 45.8,
77.9, 93, 45.8, 10.3, 90.3, 93, 10.3, 45.8, 35.2, 77.4, 87.5,
93, 10.3, 45.8, 66, 35.2, 71.2, 85.7, 93, 87.5, 45.8, 85.5, 69.6,
97.8, 10.3, 10.3, 93, 45.8, 86.6, 35.2, 35.2, 71.9, 77.9, 88.5,
80, 85.2, 93, 56.1, 85.5, 56.1, 97.6, 81.8, 79.7, 35.2, 71.1,
81.9, 53.8, 86.5, 68.7, 60.7, 78.7, 56.6, 66.9, 71.8, 79.2, 82.6,
71.8, 92.4, 85.6, 78.5, 77.3)), row.names = c(NA, -108L), class = "data.frame")
*I modelled the counts as a function of time (in months) interacting with park, the presence of carrion, the season (wet or dry), and a random effect of the transect nested within the park. We also included the log length of the transect as an offset to account for unequal sampling effort.