I’m relatively new to Bayesian Regression Models and currently exploring the R package “brms” (rstan). My current focus is on developing a regression model for a multilevel dataset with hierarchical groupings (var4/var3/var1) and repeated measures over various time occasions (var2). To accommodate temporal autocorrelation, I aim to specify the autoregressive-1 covariance structure. Could someone assist me in correctly specifying the model’s random effects?
Here’s my current model setup:
bf(
mvbind(var9, var10, var15, var16) ~ var2 + var13 + var14 + var19 + var20 + var34 + var46 + var47 + var50 + var51 + var52 + var56 + var57 + var59 + var60 + var62 + var65 + var66 + var89 + var90 + var91 + var92 + var93 + var94,
zi ~ var2 + var5 + var114,
autocor = ~ar(time = var2, gr = var4:var3:var1)
)
However, I’m uncertain whether this specification will yield the desired result.
Furthermore, I’m seeking advice on setting priors to enhance the accuracy of the estimates. Any guidance on this aspect would be greatly appreciated. Thank you!