You’re right:
summary(seir.mcmc, pars = pars2)
$summary
mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff
pred_cases[1] 9.921 3.364555 16.91999 0 0.00 3 12 58.025 25.289766
pred_cases[20] 16.980 5.300890 30.06587 0 1.00 5 21 98.000 32.169926
pred_cases[50] 43.576 4.799368 62.49209 0 4.00 20 58 216.000 169.543827
pred_cases[100] 496.266 364.258350 1095.62496 0 29.75 131 427 3640.075 9.047005
Rhat
pred_cases[1] 1.066488
pred_cases[20] 1.054154
pred_cases[50] 1.023725
pred_cases[100] 1.167377
$c_summary
, , chains = chain:1
stats
parameter mean sd 2.5% 25% 50% 75% 97.5%
pred_cases[1] 13.188 16.73094 0 1 6.5 18.25 58.050
pred_cases[20] 21.290 31.25610 0 2 10.0 28.00 95.150
pred_cases[50] 52.400 67.29259 0 7 28.5 75.00 234.625
pred_cases[100] 183.878 245.49327 0 17 86.5 239.00 891.925
, , chains = chain:2
stats
parameter mean sd 2.5% 25% 50% 75% 97.5%
pred_cases[1] 13.984 21.55098 0 1.00 6.0 17.00 84.150
pred_cases[20] 23.550 35.91232 0 3.00 11.0 29.00 114.050
pred_cases[50] 50.848 73.35778 0 5.00 22.0 66.25 260.575
pred_cases[100] 187.754 257.81339 0 20.75 94.5 252.00 953.675
, , chains = chain:3
stats
parameter mean sd 2.5% 25% 50% 75% 97.5%
pred_cases[1] 12.248 16.61308 0 1.00 7 16.25 52.575
pred_cases[20] 21.622 32.00293 0 2.75 10 28.00 112.525
pred_cases[50] 49.824 65.23545 0 6.00 26 67.00 226.675
pred_cases[100] 190.102 252.19928 0 23.00 84 261.00 923.025
, , chains = chain:4
stats
parameter mean sd 2.5% 25% 50% 75% 97.5%
pred_cases[1] 0.264 0.6285652 0 0.0 0 0 2.00
pred_cases[20] 1.458 2.3586782 0 0.0 1 2 8.00
pred_cases[50] 21.232 28.4398986 0 2.0 11 30 105.05
pred_cases[100] 1423.330 1862.8492735 2 160.5 701 1957 6649.55