Hello,

I am trying to fit what I think is a relatively straight-forward model that ends up with divergent transitions. I have proportions that I want to estimate for a number of centers along with the “mean” proportion (model shown below). The model should be similar to a meta-analysis for a binomial proportion. The chains end up with divergent transitions when I fit the model, and it looks like it is due to the transformed parameters of alpha0 and beta0. Does anyone have a suggestion for how to change the code to no longer have divergent transitions?

Thank you in advance for any input.

```
data { // Data Block
int<lower=2> S; // number of strata
int<lower=0> nyes[S]; // number of "yes" responses for each stratum
int<lower=0> nno[S]; // number of "yes" responses for each stratum
}
transformed data{
int<lower=0> ntot[S]; // Total count for each stratum
for (si in 1:S) {
ntot[si]=nyes[si]+nno[si];
}
}
parameters { // Parameters Block (primary parameters to be estimated)
vector<lower=0,upper=1>[S] pis; // Probability of "yes" for each stratum
real<lower=0,upper=1> pibar; // Probability of "yes" across all strata
real<lower=0,upper=pibar*(1-pibar)> pi_sigma2; // Variance for prior for pi_s
}
transformed parameters {
real<lower=0> psmax; // maximum for uniform distribution for pi_sigma2
alpha0=pibar/pi_sigma2*((1-pibar)*pibar-pi_sigma2);
beta0=alpha0*(1-pibar)/pibar;
psmax=pibar*(1-pibar);
}
model { // Model Block
//priors
for (si in 1:S) {
pis[si] ~ beta(alpha0,beta0); // prior for image means
}
pibar~beta(0.5,0.5);
pi_sigma2~uniform(0,psmax);
for (si in 1:S){
nyes[si] ~ binomial(ntot[si],pis[si]);
}
}
```