Greetings all,
I have a huge dataset consisting of 63000 entries with 10 colums. I am trying apply categorical modeling since response has 3 levels. However, even after 5 hours of sampling, the process does not continue and stops at Chain 4: Iteration: 1 / 2000 [ 0%] (Warmup) with no error etc. It is OK to take so much time or is there a problem? I’m running i5 cpu with 32 gb ram.
model1 <- brm(Pattern_ID ~ Modal_Verbs, data = df1, family = categorical(), cores = 4)
tibble [62,982 x 10] (S3: tbl_df/tbl/data.frame)
$ docid_field : chr [1:62982] "SPM02010" "DBAN3028" "SENS2032" "BGSU1003" ...
$ Gender : chr [1:62982] "Female" "Female" "Female" "Female" ...
$ Native_language: chr [1:62982] "Spanish" "Dutch" "Serbian" "Bulgarian" ...
$ Modal_Verbs : chr [1:62982] "will" "may" "will" "would" ...
$ Main_Verbs : chr [1:62982] "make" "be" "affect" "ask" ...
$ Pattern_ID : chr [1:62982] "pattern_simple_no_adv" "pattern_simple_no_adv" "pattern_simple_no_adv" "pattern_simple_with_adv" ...
$ Type : chr [1:62982] "Argumentative" "Argumentative" "Argumentative" "Argumentative" ...
$ Conditions : chr [1:62982] "No timing" "No timing" "Timed" "No timing" ...
$ Reference_tools: chr [1:62982] "Yes" "Yes" "No" "Yes" ...
$ Examination : chr [1:62982] "No" "No" "No" "No" ...
R version 4.1.1 (2021-08-10)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 22000)
Matrix products: default
locale:
[1] LC_COLLATE=English_United States.1252 LC_CTYPE=English_United States.1252 LC_MONETARY=English_United States.1252
[4] LC_NUMERIC=C LC_TIME=English_United States.1252
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] udpipe_0.8.8 **brms_2.16.3** rstanarm_2.21.1 Rcpp_1.0.7 forcats_0.5.1 stringr_1.4.0 dplyr_1.0.7
[8] purrr_0.3.4 readr_2.1.2 tidyr_1.2.0 tibble_3.1.5 ggplot2_3.3.5 tidyverse_1.3.1 readxl_1.3.1
loaded via a namespace (and not attached):
[1] minqa_1.2.4 colorspace_2.0-2 ellipsis_0.3.2 ggridges_0.5.3 rsconnect_0.8.25
[6] estimability_1.3 markdown_1.1 base64enc_0.1-3 fs_1.5.2 rstudioapi_0.13
[11] farver_2.1.0 rstan_2.21.2 DT_0.20 mvtnorm_1.1-3 fansi_0.5.0
[16] lubridate_1.8.0 diffobj_0.3.5 xml2_1.3.3 bridgesampling_1.1-2 codetools_0.2-18
[21] splines_4.1.1 shinythemes_1.2.0 projpred_2.0.2 bayesplot_1.8.1 jsonlite_1.7.2
[26] nloptr_1.2.2.2 broom_0.7.12 Rmpfr_0.8-7 dbplyr_2.1.1 shiny_1.7.1
[31] compiler_4.1.1 httr_1.4.2 emmeans_1.7.2 backports_1.4.1 assertthat_0.2.1
[36] Matrix_1.3-4 fastmap_1.1.0 cli_3.1.0 later_1.3.0 htmltools_0.5.2
[41] prettyunits_1.1.1 tools_4.1.1 gmp_0.6-2.1 igraph_1.2.7 coda_0.19-4
[46] gtable_0.3.0 glue_1.4.2 posterior_1.2.0 reshape2_1.4.4 V8_3.5.0
[51] cellranger_1.1.0 vctrs_0.3.8 nlme_3.1-152 crosstalk_1.2.0 tensorA_0.36.2
[56] ps_1.6.0 rvest_1.0.2 lme4_1.1-27.1 mime_0.12 miniUI_0.1.1.1
[61] lifecycle_1.0.1 gtools_3.9.2 MASS_7.3-54 zoo_1.8-9 scales_1.1.1
[66] colourpicker_1.1.1 Brobdingnag_1.2-7 hms_1.1.1 promises_1.2.0.1 parallel_4.1.1
[71] inline_0.3.19 shinystan_2.5.0 gamm4_0.2-6 curl_4.3.2 gridExtra_2.3
[76] loo_2.4.1 StanHeaders_2.21.0-7 stringi_1.7.5 dygraphs_1.1.1.6 checkmate_2.0.0
[81] boot_1.3-28 pkgbuild_1.3.1 rlang_0.4.12 pkgconfig_2.0.3 matrixStats_0.61.0
[86] distributional_0.3.0 lattice_0.20-44 rstantools_2.1.1 htmlwidgets_1.5.4 processx_3.5.2
[91] tidyselect_1.1.1 plyr_1.8.6 magrittr_2.0.1 R6_2.5.1 generics_0.1.2
[96] DBI_1.1.2 mgcv_1.8-36 pillar_1.7.0 haven_2.4.3 withr_2.4.3
[101] xts_0.12.1 abind_1.4-5 survival_3.2-11 modelr_0.1.8 crayon_1.4.2
[106] utf8_1.2.2 tzdb_0.2.0 grid_4.1.1 data.table_1.14.2 callr_3.7.0
[111] threejs_0.3.3 reprex_2.0.1 digest_0.6.28 xtable_1.8-4 httpuv_1.6.3
[116] RcppParallel_5.1.4 stats4_4.1.1 munsell_0.5.0 shinyjs_2.1.0