Hi,
I know that non-centered parameterization is generally preferred over centered parameterization but in some cases, it is advised to use centered parameterization.
“when there is a lot of data, the centered parameterization is more efficient” https://mc-stan.org/docs/2_18/stan-users-guide/reparameterization-section.html
Since brms follows the non-centered parameterization approach, can someone please guide me how best to change brms generated stan code from non-centered to centered parameterization.
Below is an example of stan code generated for a nonlinear model with three correlated random effects.
library(brms)
b <- c(2, 0.75)
x <- rnorm(100)
y <- rnorm(100, mean = b[1] * exp(b[2] * x))
dat1 <- data.frame(x, y)
fit_loss <- brm(
  bf(cum ~ ult * (1 - exp(-(dev/theta)^omega)),
     ult ~ 1 + (1|i|AY), 
     omega ~ 1 + (1|i|AY), 
     theta ~ 1 + (1|i|AY), 
     nl = TRUE),
  data = loss, family = gaussian(),
  prior = c(
    prior(normal(5000, 1000), nlpar = "ult"),
    prior(normal(1, 2), nlpar = "omega"),
    prior(normal(45, 10), nlpar = "theta")
  ),
  control = list(adapt_delta = 0.9)
)
# scode <- stancode(fit_loss)
scode <- 
  "
// generated with brms 2.20.3
functions {
 /* compute correlated group-level effects
  * Args:
  *   z: matrix of unscaled group-level effects
  *   SD: vector of standard deviation parameters
  *   L: cholesky factor correlation matrix
  * Returns:
  *   matrix of scaled group-level effects
  */
  matrix scale_r_cor(matrix z, vector SD, matrix L) {
    // r is stored in another dimension order than z
    return transpose(diag_pre_multiply(SD, L) * z);
  }
}
data {
  int<lower=1> N;  // total number of observations
  vector[N] Y;  // response variable
  int<lower=1> K_ult;  // number of population-level effects
  matrix[N, K_ult] X_ult;  // population-level design matrix
  int<lower=1> K_omega;  // number of population-level effects
  matrix[N, K_omega] X_omega;  // population-level design matrix
  int<lower=1> K_theta;  // number of population-level effects
  matrix[N, K_theta] X_theta;  // population-level design matrix
  // covariates for non-linear functions
  array[N] int C_1;
  // data for group-level effects of ID 1
  int<lower=1> N_1;  // number of grouping levels
  int<lower=1> M_1;  // number of coefficients per level
  array[N] int<lower=1> J_1;  // grouping indicator per observation
  // group-level predictor values
  vector[N] Z_1_ult_1;
  vector[N] Z_1_omega_2;
  vector[N] Z_1_theta_3;
  int<lower=1> NC_1;  // number of group-level correlations
  int prior_only;  // should the likelihood be ignored?
}
transformed data {
}
parameters {
  vector[K_ult] b_ult;  // regression coefficients
  vector[K_omega] b_omega;  // regression coefficients
  vector[K_theta] b_theta;  // regression coefficients
  real<lower=0> sigma;  // dispersion parameter
  vector<lower=0>[M_1] sd_1;  // group-level standard deviations
  matrix[M_1, N_1] z_1;  // standardized group-level effects
  cholesky_factor_corr[M_1] L_1;  // cholesky factor of correlation matrix
}
transformed parameters {
  matrix[N_1, M_1] r_1;  // actual group-level effects
  // using vectors speeds up indexing in loops
  vector[N_1] r_1_ult_1;
  vector[N_1] r_1_omega_2;
  vector[N_1] r_1_theta_3;
  real lprior = 0;  // prior contributions to the log posterior
  // compute actual group-level effects
  r_1 = scale_r_cor(z_1, sd_1, L_1);
  r_1_ult_1 = r_1[, 1];
  r_1_omega_2 = r_1[, 2];
  r_1_theta_3 = r_1[, 3];
  lprior += normal_lpdf(b_ult | 5000, 1000);
  lprior += normal_lpdf(b_omega | 1, 2);
  lprior += normal_lpdf(b_theta | 45, 10);
  lprior += student_t_lpdf(sigma | 3, 0, 1963.7)
    - 1 * student_t_lccdf(0 | 3, 0, 1963.7);
  lprior += student_t_lpdf(sd_1 | 3, 0, 1963.7)
    - 3 * student_t_lccdf(0 | 3, 0, 1963.7);
  lprior += lkj_corr_cholesky_lpdf(L_1 | 1);
}
model {
  // likelihood including constants
  if (!prior_only) {
    // initialize linear predictor term
    vector[N] nlp_ult = rep_vector(0.0, N);
    // initialize linear predictor term
    vector[N] nlp_omega = rep_vector(0.0, N);
    // initialize linear predictor term
    vector[N] nlp_theta = rep_vector(0.0, N);
    // initialize non-linear predictor term
    vector[N] mu;
    nlp_ult += X_ult * b_ult;
    nlp_omega += X_omega * b_omega;
    nlp_theta += X_theta * b_theta;
    for (n in 1:N) {
      // add more terms to the linear predictor
      nlp_ult[n] += r_1_ult_1[J_1[n]] * Z_1_ult_1[n];
    }
    for (n in 1:N) {
      // add more terms to the linear predictor
      nlp_omega[n] += r_1_omega_2[J_1[n]] * Z_1_omega_2[n];
    }
    for (n in 1:N) {
      // add more terms to the linear predictor
      nlp_theta[n] += r_1_theta_3[J_1[n]] * Z_1_theta_3[n];
    }
    for (n in 1:N) {
      // compute non-linear predictor values
      mu[n] = (nlp_ult[n] * (1 - exp( - (C_1[n] / nlp_theta[n]) ^ nlp_omega[n])));
    }
    target += normal_lpdf(Y | mu, sigma);
  }
  // priors including constants
  target += lprior;
  target += std_normal_lpdf(to_vector(z_1));
}
generated quantities {
  // compute group-level correlations
  corr_matrix[M_1] Cor_1 = multiply_lower_tri_self_transpose(L_1);
  vector<lower=-1,upper=1>[NC_1] cor_1;
  // extract upper diagonal of correlation matrix
  for (k in 1:M_1) {
    for (j in 1:(k - 1)) {
      cor_1[choose(k - 1, 2) + j] = Cor_1[j, k];
    }
  }
}
"
Thank you