I am failing to have the bayesplot(pp-check()) command function well. The plot results seem to be centred around the “0” mark, and it refuses the Xlim and ylim arguments that would scale the plot to a clear view of the plot. Is there anything I am missing, kindly help. Here below is my model.
library(ProbBayes)
library(brms)
library(dplyr)
library(ggplot2)
options(brms.backend = "cmdstanr")
prior1 <- c(set_prior("normal(49.21, 3.23)", class = "b", coef = "Age"),
set_prior("normal(-0.5, 0.25)", class = "b", coef = "Gender"),
set_prior("normal(2, 2.5)", class = "b", coef = "Education"),
set_prior("normal(5, 2.5)", class = "b", coef = "MonNetInc"),
set_prior("normal(500, 250)", class = "b", coef = "OwnrCosts"),
set_prior("normal(500, 250)", class = "b", coef = "VOwnerTarget"),
set_prior("normal(0, 1)", class = "b", coef = "PrevUseCFCs"),
set_prior("normal(500, 250)", class = "b", coef = "CashToAcceptCFC"),
set_prior("normal(0, 2.5)", class = "b", coef = "CFCPercpt"),
set_prior("normal(0, 2.5)", class = "b", coef = "SocInflc"),
set_prior("normal(0, 2.5)", class = "b", coef = "InflcdWTA"),
set_prior("normal(0, 2.5)", class = "b", coef = "Complx"),
set_prior("normal(0,2.5)", class = "b", coef = "Compblty"),
set_prior("normal(0, 2.5)", class = "b", coef = "Interests"),
set_prior("normal(0, 2.5)", class = "Intercept"),
set_prior("cauchy(0, 2.5)", class = "sigma")
)
fit_VehOwnsWTA_CFC1 <- brm(WTACFCPresState~.,
data = FullVehicleOwnersDtset3, family = gaussian(link = "identity"),
warmup = 1000, iter = 5000, seed = 123, chains = 4, prior = prior1,
control = list(adapt_delta = 0.99), cores = 2)
summary(fit_VehOwnsWTA_CFC1)
bayesplot_grid(pp_check(fit_VehOwnsWTA_CFC1, type = "hist", ndraws = 200,
xlim = c(-100, 100)))