Sorry, I print the statement in my code, maybe these can help:
data{
int<lower=1> K; //6 rating categories
int<lower=1> N; //sample size
int<lower=1> D; //7 forecast variable
int<lower=0> T; //7 year
int T_year[8]; // year data
int<lower=1,upper=K> y[N]; //regression dependent variable
row_vector[D] x[N]; //regressors
vector<lower=0>[D] a; // a vector of 0
}
parameters {
vector[D] beta1[T]; //different year regressor parameters
ordered[K-1] c[T]; //different year cutoff
real<lower=0> sigma; //the beta1[1] standard deviation
cholesky_factor_corr[D] L_Omega;
vector<lower=0>[D] L_sigma;
}
transformed parameters{
vector[D] s=[1,1,1,1,1,1,1]';
}
model {
matrix[D, D] L_Sigma;
vector[K] theta[T];
L_Omega ~ lkj_corr_cholesky(4);
L_sigma ~ cauchy(0, 2.5);
L_Sigma = diag_pre_multiply(L_sigma, L_Omega);
beta1[1]~ multi_normal(a, sigma*diag_matrix(s));//beta1[1] obey normal(0,sigma*I_{D*D}) distribution
for (i in 2:T){
beta1[i] ~ multi_normal_cholesky(beta1[i-1], L_Sigma); //beta1[i] obey normal(beta1[i-1], cov) distribution
}
//orderd probit regression model
for (t in 1:T){
for( n in (T_year[t]+1):T_year[t+1]){
real eta;
eta = x[n] * beta1[t];
theta[t,1] = 1 - Phi(eta - c[t,1]);
for (k in 2:(K-1)){
theta[t,k] = Phi(eta - c[t,k-1]) - Phi(eta - c[t,k]);
}
theta[t,K] = Phi(eta - c[t,K-1]);
y[n] ~ categorical(theta[t]);
}
}
}
I revise some places, now I haven’t log(0) in my code. But my results still have NaN!
the results are:
mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat
beta1[1,1] -0.90 0.01 0.35 -1.58 -1.11 -0.91 -0.69 -0.16 1682 1.00
beta1[1,2] 0.15 0.00 0.09 0.00 0.08 0.15 0.21 0.35 998 1.00
beta1[1,3] 5.81 0.02 0.81 4.26 5.26 5.80 6.35 7.43 1336 1.00
beta1[1,4] -0.01 0.02 0.44 -0.89 -0.31 0.00 0.29 0.81 608 1.00
beta1[1,5] 1.79 0.01 0.35 1.21 1.54 1.75 2.01 2.54 1670 1.00
beta1[1,6] -0.02 0.01 0.22 -0.48 -0.16 -0.03 0.12 0.42 375 1.00
beta1[1,7] 0.26 0.02 0.41 -0.58 0.00 0.27 0.54 1.03 338 1.01
beta1[2,1] -1.06 0.02 0.34 -1.80 -1.24 -1.03 -0.84 -0.47 444 1.01
beta1[2,2] 0.11 0.00 0.07 -0.02 0.06 0.11 0.16 0.27 1400 1.00
beta1[2,3] 5.43 0.01 0.66 4.17 4.99 5.43 5.87 6.74 2232 1.00
beta1[2,4] 0.06 0.02 0.40 -0.77 -0.21 0.07 0.34 0.81 389 1.01
beta1[2,5] 1.33 0.01 0.29 0.69 1.15 1.34 1.53 1.85 1548 1.00
beta1[2,6] -0.03 0.01 0.20 -0.40 -0.16 -0.03 0.10 0.36 423 1.00
beta1[2,7] 0.27 0.02 0.38 -0.50 0.01 0.26 0.52 0.99 318 1.00
beta1[3,1] -0.92 0.01 0.28 -1.45 -1.09 -0.92 -0.74 -0.33 1720 1.00
beta1[3,2] 0.04 0.00 0.07 -0.10 0.00 0.04 0.08 0.16 2614 1.00
beta1[3,3] 4.72 0.01 0.65 3.47 4.27 4.73 5.13 6.08 2670 1.00
beta1[3,4] 0.15 0.02 0.38 -0.63 -0.11 0.16 0.41 0.84 399 1.01
beta1[3,5] 1.14 0.01 0.36 0.37 0.90 1.17 1.42 1.72 713 1.01
beta1[3,6] -0.01 0.01 0.19 -0.42 -0.14 -0.02 0.12 0.37 375 1.00
beta1[3,7] 0.33 0.02 0.37 -0.38 0.09 0.32 0.57 1.07 321 1.01
beta1[4,1] -0.90 0.01 0.29 -1.45 -1.08 -0.91 -0.72 -0.26 909 1.01
beta1[4,2] -0.02 0.00 0.07 -0.18 -0.07 -0.01 0.03 0.10 1125 1.01
beta1[4,3] 3.90 0.01 0.59 2.76 3.50 3.90 4.29 5.09 2646 1.00
beta1[4,4] 0.16 0.02 0.37 -0.57 -0.07 0.18 0.42 0.83 423 1.00
beta1[4,5] 1.58 0.01 0.29 1.04 1.39 1.56 1.74 2.19 2354 1.00
beta1[4,6] -0.07 0.01 0.18 -0.43 -0.19 -0.06 0.06 0.29 374 1.00
beta1[4,7] 0.31 0.02 0.36 -0.38 0.06 0.30 0.55 1.00 304 1.00
beta1[5,1] -0.80 0.01 0.31 -1.35 -1.01 -0.84 -0.63 -0.12 872 1.01
beta1[5,2] 0.01 0.00 0.06 -0.11 -0.03 0.02 0.06 0.12 2100 1.00
beta1[5,3] 2.90 0.01 0.42 2.08 2.61 2.91 3.19 3.65 1286 1.00
beta1[5,4] 0.39 0.02 0.36 -0.33 0.15 0.38 0.63 1.07 461 1.00
beta1[5,5] 1.66 0.01 0.29 1.12 1.48 1.64 1.83 2.27 2108 1.00
beta1[5,6] -0.18 0.01 0.18 -0.54 -0.30 -0.17 -0.05 0.16 411 1.01
beta1[5,7] 0.28 0.02 0.36 -0.41 0.04 0.27 0.53 0.99 325 1.00
beta1[6,1] -0.78 0.02 0.35 -1.35 -1.01 -0.83 -0.60 0.10 446 1.01
beta1[6,2] 0.08 0.00 0.06 -0.04 0.04 0.08 0.12 0.20 1491 1.00
beta1[6,3] 2.20 0.02 0.44 1.38 1.89 2.20 2.52 3.06 860 1.00
beta1[6,4] 0.71 0.02 0.41 -0.04 0.42 0.70 0.97 1.56 503 1.00
beta1[6,5] 1.68 0.01 0.28 1.15 1.49 1.66 1.85 2.23 1530 1.00
beta1[6,6] -0.23 0.01 0.20 -0.62 -0.36 -0.22 -0.09 0.13 417 1.00
beta1[6,7] 0.32 0.02 0.38 -0.42 0.06 0.30 0.57 1.07 366 1.00
beta1[7,1] -1.22 0.02 0.39 -2.16 -1.45 -1.16 -0.94 -0.60 485 1.00
beta1[7,2] 0.10 0.00 0.08 -0.04 0.04 0.09 0.15 0.27 1070 1.00
beta1[7,3] 3.38 0.02 0.64 2.18 2.95 3.37 3.81 4.63 1800 1.00
beta1[7,4] 0.50 0.02 0.38 -0.25 0.23 0.51 0.75 1.24 546 1.00
beta1[7,5] 1.67 0.01 0.29 1.12 1.47 1.65 1.85 2.25 2154 1.00
beta1[7,6] 0.03 0.01 0.21 -0.39 -0.11 0.03 0.17 0.46 421 1.00
beta1[7,7] 0.33 0.02 0.38 -0.42 0.08 0.33 0.58 1.07 373 1.00
c[1,1] -2.48 0.01 0.31 -3.11 -2.69 -2.48 -2.26 -1.91 1028 1.00
c[1,2] -1.05 0.01 0.22 -1.49 -1.21 -1.05 -0.90 -0.64 678 1.00
c[1,3] -0.26 0.01 0.21 -0.69 -0.40 -0.26 -0.11 0.15 716 1.00
c[1,4] 0.90 0.01 0.22 0.47 0.76 0.91 1.06 1.31 772 1.00
c[1,5] 1.48 0.01 0.22 1.04 1.33 1.49 1.63 1.90 825 1.00
c[2,1] -2.46 0.01 0.26 -2.99 -2.63 -2.45 -2.28 -1.98 875 1.00
c[2,2] -1.41 0.01 0.20 -1.82 -1.54 -1.40 -1.27 -1.03 393 1.01
c[2,3] -0.59 0.01 0.19 -1.00 -0.73 -0.59 -0.46 -0.24 443 1.00
c[2,4] 0.73 0.01 0.20 0.31 0.60 0.74 0.87 1.09 395 1.01
c[2,5] 1.34 0.01 0.20 0.91 1.21 1.35 1.48 1.71 402 1.01
c[3,1] -2.18 0.01 0.24 -2.67 -2.35 -2.17 -2.01 -1.73 464 1.00
c[3,2] -1.09 0.01 0.19 -1.48 -1.21 -1.09 -0.96 -0.73 461 1.00
c[3,3] -0.48 0.01 0.18 -0.86 -0.60 -0.47 -0.35 -0.14 455 1.00
c[3,4] 0.76 0.01 0.18 0.39 0.64 0.76 0.89 1.08 475 1.00
c[3,5] 1.38 0.01 0.18 1.01 1.26 1.38 1.50 1.71 489 1.00
c[4,1] -1.94 0.01 0.21 -2.41 -2.07 -1.93 -1.79 -1.55 504 1.00
c[4,2] -1.03 0.01 0.18 -1.38 -1.15 -1.02 -0.91 -0.68 484 1.00
c[4,3] -0.57 0.01 0.18 -0.92 -0.68 -0.57 -0.45 -0.23 497 1.00
c[4,4] 0.58 0.01 0.18 0.23 0.47 0.59 0.70 0.91 507 1.00
c[4,5] 1.26 0.01 0.18 0.90 1.14 1.27 1.39 1.59 507 1.00
c[5,1] -1.53 0.01 0.18 -1.89 -1.65 -1.54 -1.41 -1.18 715 1.00
c[5,2] -0.64 0.01 0.17 -0.97 -0.74 -0.64 -0.52 -0.31 623 1.00
c[5,3] -0.17 0.01 0.17 -0.50 -0.28 -0.17 -0.05 0.15 613 1.00
c[5,4] 0.69 0.01 0.17 0.35 0.58 0.68 0.81 1.01 641 1.00
c[5,5] 1.36 0.01 0.17 1.02 1.25 1.37 1.48 1.69 620 1.00
c[6,1] -1.31 0.01 0.20 -1.67 -1.45 -1.32 -1.18 -0.90 587 1.00
c[6,2] -0.40 0.01 0.19 -0.74 -0.53 -0.41 -0.27 0.00 523 1.00
c[6,3] 0.05 0.01 0.19 -0.30 -0.09 0.04 0.18 0.44 508 1.00
c[6,4] 0.82 0.01 0.19 0.48 0.68 0.81 0.95 1.22 553 1.00
c[6,5] 1.50 0.01 0.20 1.15 1.36 1.49 1.63 1.91 585 1.00
c[7,1] -1.82 0.01 0.21 -2.25 -1.96 -1.81 -1.68 -1.42 706 1.00
c[7,2] -0.95 0.01 0.19 -1.36 -1.07 -0.94 -0.82 -0.59 532 1.00
c[7,3] -0.21 0.01 0.19 -0.63 -0.33 -0.20 -0.09 0.14 493 1.00
c[7,4] 0.62 0.01 0.19 0.20 0.49 0.62 0.74 0.97 502 1.00
c[7,5] 1.25 0.01 0.19 0.84 1.13 1.26 1.37 1.60 546 1.00
sigma 12.99 0.39 16.05 2.64 5.75 8.81 14.37 47.41 1683 1.00
L_Omega[1,1] 1.00 NaN 0.00 1.00 1.00 1.00 1.00 1.00 NaN NaN
L_Omega[1,2] 0.00 NaN 0.00 0.00 0.00 0.00 0.00 0.00 NaN NaN
L_Omega[1,3] 0.00 NaN 0.00 0.00 0.00 0.00 0.00 0.00 NaN NaN
L_Omega[1,4] 0.00 NaN 0.00 0.00 0.00 0.00 0.00 0.00 NaN NaN
L_Omega[1,5] 0.00 NaN 0.00 0.00 0.00 0.00 0.00 0.00 NaN NaN
L_Omega[1,6] 0.00 NaN 0.00 0.00 0.00 0.00 0.00 0.00 NaN NaN
L_Omega[1,7] 0.00 NaN 0.00 0.00 0.00 0.00 0.00 0.00 NaN NaN
L_Omega[2,1] -0.02 0.00 0.27 -0.51 -0.22 -0.03 0.16 0.50 3569 1.00
L_Omega[2,2] 0.96 0.00 0.05 0.83 0.95 0.98 1.00 1.00 1874 1.00
L_Omega[2,3] 0.00 NaN 0.00 0.00 0.00 0.00 0.00 0.00 NaN NaN
L_Omega[2,4] 0.00 NaN 0.00 0.00 0.00 0.00 0.00 0.00 NaN NaN
L_Omega[2,5] 0.00 NaN 0.00 0.00 0.00 0.00 0.00 0.00 NaN NaN
L_Omega[2,6] 0.00 NaN 0.00 0.00 0.00 0.00 0.00 0.00 NaN NaN
L_Omega[2,7] 0.00 NaN 0.00 0.00 0.00 0.00 0.00 0.00 NaN NaN
L_Omega[3,1] -0.08 0.00 0.26 -0.56 -0.26 -0.09 0.10 0.44 2971 1.00
L_Omega[3,2] 0.03 0.00 0.25 -0.45 -0.14 0.03 0.21 0.51 3555 1.00
L_Omega[3,3] 0.93 0.00 0.07 0.74 0.90 0.95 0.98 1.00 1718 1.00
L_Omega[3,4] 0.00 NaN 0.00 0.00 0.00 0.00 0.00 0.00 NaN NaN
L_Omega[3,5] 0.00 NaN 0.00 0.00 0.00 0.00 0.00 0.00 NaN NaN
L_Omega[3,6] 0.00 NaN 0.00 0.00 0.00 0.00 0.00 0.00 NaN NaN
L_Omega[3,7] 0.00 NaN 0.00 0.00 0.00 0.00 0.00 0.00 NaN NaN
L_Omega[4,1] 0.03 0.00 0.26 -0.48 -0.14 0.03 0.22 0.54 3845 1.00
L_Omega[4,2] 0.01 0.01 0.27 -0.55 -0.18 0.02 0.21 0.52 1133 1.00
L_Omega[4,3] -0.09 0.00 0.26 -0.59 -0.27 -0.09 0.09 0.43 2744 1.00
L_Omega[4,4] 0.88 0.00 0.09 0.66 0.83 0.90 0.95 0.99 1708 1.00
L_Omega[4,5] 0.00 NaN 0.00 0.00 0.00 0.00 0.00 0.00 NaN NaN
L_Omega[4,6] 0.00 NaN 0.00 0.00 0.00 0.00 0.00 0.00 NaN NaN
L_Omega[4,7] 0.00 NaN 0.00 0.00 0.00 0.00 0.00 0.00 NaN NaN
L_Omega[5,1] 0.01 0.00 0.27 -0.50 -0.18 0.02 0.20 0.52 3280 1.00
L_Omega[5,2] 0.03 0.00 0.26 -0.48 -0.16 0.03 0.22 0.53 3256 1.00
L_Omega[5,3] -0.02 0.00 0.26 -0.51 -0.19 -0.02 0.16 0.47 3062 1.00
L_Omega[5,4] 0.00 0.01 0.27 -0.51 -0.18 0.00 0.19 0.52 1709 1.00
L_Omega[5,5] 0.84 0.00 0.10 0.61 0.79 0.86 0.92 0.98 2007 1.00
L_Omega[5,6] 0.00 NaN 0.00 0.00 0.00 0.00 0.00 0.00 NaN NaN
L_Omega[5,7] 0.00 NaN 0.00 0.00 0.00 0.00 0.00 0.00 NaN NaN
L_Omega[6,1] -0.08 0.01 0.27 -0.57 -0.28 -0.09 0.10 0.45 1280 1.00
L_Omega[6,2] 0.00 0.00 0.27 -0.50 -0.20 -0.01 0.19 0.52 3491 1.00
L_Omega[6,3] 0.11 0.01 0.25 -0.37 -0.07 0.11 0.29 0.57 2411 1.00
L_Omega[6,4] -0.08 0.01 0.27 -0.57 -0.27 -0.09 0.11 0.45 1981 1.00
L_Omega[6,5] -0.02 0.01 0.26 -0.55 -0.21 -0.02 0.16 0.48 2029 1.00
L_Omega[6,6] 0.79 0.00 0.11 0.54 0.71 0.80 0.87 0.96 1518 1.00
L_Omega[6,7] 0.00 NaN 0.00 0.00 0.00 0.00 0.00 0.00 NaN NaN
L_Omega[7,1] -0.02 0.00 0.27 -0.52 -0.21 -0.02 0.17 0.49 3065 1.00
L_Omega[7,2] 0.00 0.00 0.26 -0.50 -0.19 0.00 0.19 0.50 2993 1.00
L_Omega[7,3] 0.02 0.01 0.28 -0.50 -0.17 0.01 0.20 0.59 986 1.00
L_Omega[7,4] -0.04 0.01 0.27 -0.56 -0.25 -0.05 0.16 0.48 1756 1.00
L_Omega[7,5] -0.02 0.01 0.27 -0.55 -0.21 -0.03 0.17 0.49 1632 1.00
L_Omega[7,6] -0.05 0.01 0.27 -0.57 -0.24 -0.05 0.14 0.47 2120 1.00
L_Omega[7,7] 0.74 0.00 0.13 0.46 0.65 0.75 0.83 0.94 1647 1.00
L_sigma[1] 0.42 0.02 0.36 0.02 0.15 0.33 0.58 1.31 406 1.01
L_sigma[2] 0.12 0.00 0.08 0.01 0.06 0.10 0.15 0.32 712 1.00
L_sigma[3] 1.33 0.01 0.56 0.58 0.95 1.22 1.60 2.73 1594 1.00
L_sigma[4] 0.41 0.01 0.27 0.05 0.21 0.36 0.53 1.10 917 1.00
L_sigma[5] 0.52 0.01 0.39 0.03 0.24 0.45 0.72 1.48 679 1.01
L_sigma[6] 0.21 0.01 0.15 0.02 0.11 0.18 0.27 0.57 831 1.00
L_sigma[7] 0.19 0.01 0.17 0.02 0.08 0.15 0.26 0.63 802 1.00
s[1] 1.00 NaN 0.00 1.00 1.00 1.00 1.00 1.00 NaN NaN
s[2] 1.00 NaN 0.00 1.00 1.00 1.00 1.00 1.00 NaN NaN
s[3] 1.00 NaN 0.00 1.00 1.00 1.00 1.00 1.00 NaN NaN
s[4] 1.00 NaN 0.00 1.00 1.00 1.00 1.00 1.00 NaN NaN
s[5] 1.00 NaN 0.00 1.00 1.00 1.00 1.00 1.00 NaN NaN
s[6] 1.00 NaN 0.00 1.00 1.00 1.00 1.00 1.00 NaN NaN
s[7] 1.00 NaN 0.00 1.00 1.00 1.00 1.00 1.00 NaN NaN
lp__ -7475.27 0.54 11.09 -7497.19 -7482.57 -7475.41 -7467.70 -7453.68 419 1.01
And I put my R code and data:
D<-read.csv("data.csv",header = T)
library(dplyr)
D<- arrange(D,D[,2]) #sort by year
Y<-D[,1]
X<-D[,-1:-2]
N<-nrow(D)
y_year=c(594,646,703,697,716,753,822) # The numebers of data in each year
T_year<-cumsum(y_year)
T_year<-c(0,T_year)
a=c(0,0,0,0,0,0,0)
data<-list(y=Y,x=X,N=N,K=6,D=7,T=7,T_year=T_year,a=a)
data.csv (337.2 KB)
Maybe these can provide enough information?
Thanks~