I build a simple hierarchical stan model to retrieve the probability theta of binomial distribution (code below).
My input data is a table with the information of Number of all (N) and successful (n) trials, and metadata to which group it belongs (x:0-1, t:1-225, g:1-4 and c:1-4)
N | n | x | t | g | c |
---|---|---|---|---|---|
123 | 10 | 1 | 1 | 1 | 2 |
531 | 500 | 1 | 0 | 1 | 1 |
12 | 6 | 0 | 1 | 2 | 1 |
Running it with rstan, I get the following error during/after sampling:
SAMPLING FOR MODEL 'Modle_roadmap_20210428' NOW (CHAIN 4).
Error in FUN(X[[i]], ...) :
trying to get slot "mode" from an object (class "try-error") that is not an
S4 object
Calls: stan ... sampling -> sampling -> .local -> sapply -> lapply -> FUN
In addition: Warning message:
In parallel::mclapply(1:chains, FUN = callFun, mc.preschedule = FALSE, :
4 function calls resulted in an error
Execution halted
Occasionally it gets a full run, when I only use 1 chain and I increase the stack size limit in my terminal (I dont hit a memory or CPU limit). And it always works when I reduce the datasets (The full set are 250,000 observations/rows).
I am unsure if this datasets is just to big, or if there is a way to optimize the code to make it work (ideally with an even bigger datasets). I read the documentation on optimization and implemented the brute force vectorization approach described in chapter 21.8, however this did not effect the error, or performance (for smaller models).
data {
int<lower=1> Nr; //
int<lower=1> Nt;//
int<lower=1> Nxtgc; //
int<lower=1> xtgc[Nr]; //
int<lower=1> N[Nr]; //
int<lower=0> n[Nr]; //
int<lower=1> tLookup[Nxtgc]; // lookuptable for entry which t it belongs to
}
parameters {
real a_t[Nt];
real a_xtgc[Nxtgc];
real <lower=0>sigma_xtgc;
real <lower=0>simga_t;
}
transformed parameters {
vector[Nr] theta; // binomial probabilities
for (rowIndex in 1:Nr) { // linear model
theta[rowIndex] = inv_logit(a_xtgc[xtgc[rowIndex]]);
}
}
model {
vector[Nxtgc] a_t_ii;
simga_t ~ exponential(0.01);
a_t ~ normal(-4,simga_t);
sigma_xtgc ~ exponential(0.01);
for (Idx in 1:Nxtgc) { // brute force vectorization approch according to stan user guide (21.8)
a_t_ii[Idx] = a_t[tLookup[Idx]];
}
a_xtgc ~ normal(a_t_ii,sigma_xtgc);
n ~ binomial(N, theta);
}
Thanks a lot in advance.