Rstan crashes R at end of model compilation

A recent Debian testing update may have hosed by rstan instalation (BTW, I have the same problem with brms ; I report the rstan example because it’s simpler).

Example setup :

D1 <-
structure(list(nDate = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 
13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 
29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 
45, 46, 47, 48), Poids = c(84.299999999999997, 84.299999999999997, 
84.5, 84.400000000000006, 84.200000000000003, 84.700000000000003, 
84.400000000000006, 84.700000000000003, 84.5, 84.700000000000003, 
84.700000000000003, 84.799999999999997, 84.099999999999994, 84.900000000000006, 
84.799999999999997, 85, 84.900000000000006, 85.299999999999997, 
85.099999999999994, 85.400000000000006, 85.799999999999997, 84.200000000000003, 
84.900000000000006, 84.799999999999997, 85.200000000000003, 85.299999999999997, 
84.599999999999994, 84.799999999999997, 84.599999999999994, 84.700000000000003, 
85.700000000000003, 84.700000000000003, 85, 84.700000000000003, 
84.299999999999997, 84.200000000000003, 84.700000000000003, 84.5, 
84.400000000000006, 84.099999999999994, 84.5, 84, 84.400000000000006, 
84.299999999999997, 84.099999999999994, 84.299999999999997, 84.400000000000006, 
84)), class = "data.frame", row.names = c(NA, -48L))


library(rstan)
options(mc.cores = parallel::detectCores())
rstan_options(auto_write = TRUE)

MC <-  "
data {
  int		nObs;
  vector[nObs]	Poids;
  vector[nObs]	nDate;
}

parameters {
  real		a;
  real		b;
  real<lower=0>	sigma;
}

model {
  vector[nObs]	Phat;
  Phat = a + b*Poids;
  // Priors
  target += cauchy_lpdf(a | 0, 1);
  target += cauchy_lpdf(b | 0, 1);
  target += cauchy_lpdf(sigma | 0, 1);
  // Likelihood
  target += normal_lpdf(Poids | Phat, sigma);
}
"

The problem :

> system.time(Mfoo  <- stan_model(model_code = MC, model_name="Mfoo"))
## About 1 min later :
Process R exception en point flottant at Mon Apr 12 09:04:28 2021

This started after this morning routine update of Debian testing and R packages. Much more intricate brms model compiled and ran fine yesterday…

Any suggestion ?

Can you post the output of the run without a system.time() wrapper? That’s swallowing any error messages we can use to debug.

Does the rstan example model run:

example(stan_model,package="rstan",run.dontrun=T)

Sorry for the delay : I was at my physician’s…

Can you post the output of the run without a system.time() wrapper? That’s swallowing any error messages we can use to debug.

Ran in an ESS inferior R buffer, the result is strictly the same : R dies :

> foo <- stan_model(model_name="foo", model_code = MC)

Process R exception en point flottant at Mon Apr 12 13:11:45 2021

Result almost identical when ran in a terminal :

> foo <- stan_model(model_name="foo", model_code = MC)
Exception en point flottant

example(stan_model,package=“rstan”,run.dontrun=T)

Ran in an ESS inferior-R buffer, this kills R (silently, but emacs’ modeline says (iESS [R] :no process), after printing what follows in the buffer :


R version 4.0.4 (2021-02-15) -- "Lost Library Book"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)

R est un logiciel libre livré sans AUCUNE GARANTIE.
Vous pouvez le redistribuer sous certaines conditions.
Tapez 'license()' ou 'licence()' pour plus de détails.

R est un projet collaboratif avec de nombreux contributeurs.
Tapez 'contributors()' pour plus d'information et
'citation()' pour la façon de le citer dans les publications.

Tapez 'demo()' pour des démonstrations, 'help()' pour l'aide
en ligne ou 'help.start()' pour obtenir l'aide au format HTML.
Tapez 'q()' pour quitter R.

[Sauvegarde de la session précédente restaurée]

> setwd('/home/charpent/Documents/Perso/SuiviMédical/')
> library(rstan)
Le chargement a nécessité le package : StanHeaders
Le chargement a nécessité le package : ggplot2
rstan (Version 2.21.2, GitRev: 2e1f913d3ca3)
For execution on a local, multicore CPU with excess RAM we recommend calling
options(mc.cores = parallel::detectCores()).
To avoid recompilation of unchanged Stan programs, we recommend calling
rstan_options(auto_write = TRUE)
> options(mc.cores = parallel::detectCores())
> rstan_options(auto_write = TRUE)
> example(stan_model,package="rstan",run.dontrun=T)

stn_md> stancode <- 'data {real y_mean;} parameters {real y;} model {y ~ normal(y_mean,1);}'

stn_md> mod <- stan_model(model_code = stancode, verbose = TRUE)

TRANSLATING MODEL '16a540c6086086816528e4524def24d9' FROM Stan CODE TO C++ CODE NOW.
successful in parsing the Stan model '16a540c6086086816528e4524def24d9'.
COMPILING THE C++ CODE FOR MODEL '16a540c6086086816528e4524def24d9' NOW.
OS: x86_64, linux-gnu; rstan: 2.21.2; Rcpp: 1.0.6; inline: 0.3.17 
 >> setting environment variables: 
PKG_LIBS =  '/usr/local/lib/R/site-library/rstan/lib//libStanServices.a' -L'/usr/local/lib/R/site-library/StanHeaders/lib/' -lStanHeaders -L'/usr/local/lib/R/site-library/RcppParallel/lib/' -ltbb
PKG_CPPFLAGS =   -I"/usr/local/lib/R/site-library/Rcpp/include/"  -I"/usr/local/lib/R/site-library/RcppEigen/include/"  -I"/usr/local/lib/R/site-library/RcppEigen/include/unsupported"  -I"/usr/local/lib/R/site-library/BH/include" -I"/usr/local/lib/R/site-library/StanHeaders/include/src/"  -I"/usr/local/lib/R/site-library/StanHeaders/include/"  -I"/usr/local/lib/R/site-library/RcppParallel/include/"  -I"/usr/local/lib/R/site-library/rstan/include" -DEIGEN_NO_DEBUG  -DBOOST_DISABLE_ASSERTS  -DBOOST_PENDING_INTEGER_LOG2_HPP  -DSTAN_THREADS  -DBOOST_NO_AUTO_PTR  -include '/usr/local/lib/R/site-library/StanHeaders/include/stan/math/prim/mat/fun/Eigen.hpp'  -D_REENTRANT -DRCPP_PARALLEL_USE_TBB=1 
 >> Program source :

   1 : 
   2 : // includes from the plugin
   3 : // [[Rcpp::plugins(cpp14)]]
   4 : 
   5 : 
   6 : // user includes
   7 : #include <Rcpp.h>
   8 : #include <rstan/io/rlist_ref_var_context.hpp>
   9 : #include <rstan/io/r_ostream.hpp>
  10 : #include <rstan/stan_args.hpp>
  11 : #include <boost/integer/integer_log2.hpp>
  12 : // Code generated by Stan version 2.21.0
  13 : 
  14 : #include <stan/model/model_header.hpp>
  15 : 
  16 : namespace model4ad061e92827e_16a540c6086086816528e4524def24d9_namespace {
  17 : 
  18 : using std::istream;
  19 : using std::string;
  20 : using std::stringstream;
  21 : using std::vector;
  22 : using stan::io::dump;
  23 : using stan::math::lgamma;
  24 : using stan::model::prob_grad;
  25 : using namespace stan::math;
  26 : 
  27 : static int current_statement_begin__;
  28 : 
  29 : stan::io::program_reader prog_reader__() {
  30 :     stan::io::program_reader reader;
  31 :     reader.add_event(0, 0, "start", "model4ad061e92827e_16a540c6086086816528e4524def24d9");
  32 :     reader.add_event(3, 1, "end", "model4ad061e92827e_16a540c6086086816528e4524def24d9");
  33 :     return reader;
  34 : }
  35 : 
  36 : class model4ad061e92827e_16a540c6086086816528e4524def24d9
  37 :   : public stan::model::model_base_crtp<model4ad061e92827e_16a540c6086086816528e4524def24d9> {
  38 : private:
  39 :         double y_mean;
  40 : public:
  41 :     model4ad061e92827e_16a540c6086086816528e4524def24d9(rstan::io::rlist_ref_var_context& context__,
  42 :         std::ostream* pstream__ = 0)
  43 :         : model_base_crtp(0) {
  44 :         ctor_body(context__, 0, pstream__);
  45 :     }
  46 : 
  47 :     model4ad061e92827e_16a540c6086086816528e4524def24d9(stan::io::var_context& context__,
  48 :         unsigned int random_seed__,
  49 :         std::ostream* pstream__ = 0)
  50 :         : model_base_crtp(0) {
  51 :         ctor_body(context__, random_seed__, pstream__);
  52 :     }
  53 : 
  54 :     void ctor_body(stan::io::var_context& context__,
  55 :                    unsigned int random_seed__,
  56 :                    std::ostream* pstream__) {
  57 :         typedef double local_scalar_t__;
  58 : 
  59 :         boost::ecuyer1988 base_rng__ =
  60 :           stan::services::util::create_rng(random_seed__, 0);
  61 :         (void) base_rng__;  // suppress unused var warning
  62 : 
  63 :         current_statement_begin__ = -1;
  64 : 
  65 :         static const char* function__ = "model4ad061e92827e_16a540c6086086816528e4524def24d9_namespace::model4ad061e92827e_16a540c6086086816528e4524def24d9";
  66 :         (void) function__;  // dummy to suppress unused var warning
  67 :         size_t pos__;
  68 :         (void) pos__;  // dummy to suppress unused var warning
  69 :         std::vector<int> vals_i__;
  70 :         std::vector<double> vals_r__;
  71 :         local_scalar_t__ DUMMY_VAR__(std::numeric_limits<double>::quiet_NaN());
  72 :         (void) DUMMY_VAR__;  // suppress unused var warning
  73 : 
  74 :         try {
  75 :             // initialize data block variables from context__
  76 :             current_statement_begin__ = 1;
  77 :             context__.validate_dims("data initialization", "y_mean", "double", context__.to_vec());
  78 :             y_mean = double(0);
  79 :             vals_r__ = context__.vals_r("y_mean");
  80 :             pos__ = 0;
  81 :             y_mean = vals_r__[pos__++];
  82 : 
  83 : 
  84 :             // initialize transformed data variables
  85 :             // execute transformed data statements
  86 : 
  87 :             // validate transformed data
  88 : 
  89 :             // validate, set parameter ranges
  90 :             num_params_r__ = 0U;
  91 :             param_ranges_i__.clear();
  92 :             current_statement_begin__ = 1;
  93 :             num_params_r__ += 1;
  94 :         } catch (const std::exception& e) {
  95 :             stan::lang::rethrow_located(e, current_statement_begin__, prog_reader__());
  96 :             // Next line prevents compiler griping about no return
  97 :             throw std::runtime_error("*** IF YOU SEE THIS, PLEASE REPORT A BUG ***");
  98 :         }
  99 :     }
 100 : 
 101 :     ~model4ad061e92827e_16a540c6086086816528e4524def24d9() { }
 102 : 
 103 : 
 104 :     void transform_inits(const stan::io::var_context& context__,
 105 :                          std::vector<int>& params_i__,
 106 :                          std::vector<double>& params_r__,
 107 :                          std::ostream* pstream__) const {
 108 :         typedef double local_scalar_t__;
 109 :         stan::io::writer<double> writer__(params_r__, params_i__);
 110 :         size_t pos__;
 111 :         (void) pos__; // dummy call to supress warning
 112 :         std::vector<double> vals_r__;
 113 :         std::vector<int> vals_i__;
 114 : 
 115 :         current_statement_begin__ = 1;
 116 :         if (!(context__.contains_r("y")))
 117 :             stan::lang::rethrow_located(std::runtime_error(std::string("Variable y missing")), current_statement_begin__, prog_reader__());
 118 :         vals_r__ = context__.vals_r("y");
 119 :         pos__ = 0U;
 120 :         context__.validate_dims("parameter initialization", "y", "double", context__.to_vec());
 121 :         double y(0);
 122 :         y = vals_r__[pos__++];
 123 :         try {
 124 :             writer__.scalar_unconstrain(y);
 125 :         } catch (const std::exception& e) {
 126 :             stan::lang::rethrow_located(std::runtime_error(std::string("Error transforming variable y: ") + e.what()), current_statement_begin__, prog_reader__());
 127 :         }
 128 : 
 129 :         params_r__ = writer__.data_r();
 130 :         params_i__ = writer__.data_i();
 131 :     }
 132 : 
 133 :     void transform_inits(const stan::io::var_context& context,
 134 :                          Eigen::Matrix<double, Eigen::Dynamic, 1>& params_r,
 135 :                          std::ostream* pstream__) const {
 136 :       std::vector<double> params_r_vec;
 137 :       std::vector<int> params_i_vec;
 138 :       transform_inits(context, params_i_vec, params_r_vec, pstream__);
 139 :       params_r.resize(params_r_vec.size());
 140 :       for (int i = 0; i < params_r.size(); ++i)
 141 :         params_r(i) = params_r_vec[i];
 142 :     }
 143 : 
 144 : 
 145 :     template <bool propto__, bool jacobian__, typename T__>
 146 :     T__ log_prob(std::vector<T__>& params_r__,
 147 :                  std::vector<int>& params_i__,
 148 :                  std::ostream* pstream__ = 0) const {
 149 : 
 150 :         typedef T__ local_scalar_t__;
 151 : 
 152 :         local_scalar_t__ DUMMY_VAR__(std::numeric_limits<double>::quiet_NaN());
 153 :         (void) DUMMY_VAR__;  // dummy to suppress unused var warning
 154 : 
 155 :         T__ lp__(0.0);
 156 :         stan::math::accumulator<T__> lp_accum__;
 157 :         try {
 158 :             stan::io::reader<local_scalar_t__> in__(params_r__, params_i__);
 159 : 
 160 :             // model parameters
 161 :             current_statement_begin__ = 1;
 162 :             local_scalar_t__ y;
 163 :             (void) y;  // dummy to suppress unused var warning
 164 :             if (jacobian__)
 165 :                 y = in__.scalar_constrain(lp__);
 166 :             else
 167 :                 y = in__.scalar_constrain();
 168 : 
 169 :             // model body
 170 : 
 171 :             current_statement_begin__ = 1;
 172 :             lp_accum__.add(normal_log<propto__>(y, y_mean, 1));
 173 : 
 174 :         } catch (const std::exception& e) {
 175 :             stan::lang::rethrow_located(e, current_statement_begin__, prog_reader__());
 176 :             // Next line prevents compiler griping about no return
 177 :             throw std::runtime_error("*** IF YOU SEE THIS, PLEASE REPORT A BUG ***");
 178 :         }
 179 : 
 180 :         lp_accum__.add(lp__);
 181 :         return lp_accum__.sum();
 182 : 
 183 :     } // log_prob()
 184 : 
 185 :     template <bool propto, bool jacobian, typename T_>
 186 :     T_ log_prob(Eigen::Matrix<T_,Eigen::Dynamic,1>& params_r,
 187 :                std::ostream* pstream = 0) const {
 188 :       std::vector<T_> vec_params_r;
 189 :       vec_params_r.reserve(params_r.size());
 190 :       for (int i = 0; i < params_r.size(); ++i)
 191 :         vec_params_r.push_back(params_r(i));
 192 :       std::vector<int> vec_params_i;
 193 :       return log_prob<propto,jacobian,T_>(vec_params_r, vec_params_i, pstream);
 194 :     }
 195 : 
 196 : 
 197 :     void get_param_names(std::vector<std::string>& names__) const {
 198 :         names__.resize(0);
 199 :         names__.push_back("y");
 200 :     }
 201 : 
 202 : 
 203 :     void get_dims(std::vector<std::vector<size_t> >& dimss__) const {
 204 :         dimss__.resize(0);
 205 :         std::vector<size_t> dims__;
 206 :         dims__.resize(0);
 207 :         dimss__.push_back(dims__);
 208 :     }
 209 : 
 210 :     template <typename RNG>
 211 :     void write_array(RNG& base_rng__,
 212 :                      std::vector<double>& params_r__,
 213 :                      std::vector<int>& params_i__,
 214 :                      std::vector<double>& vars__,
 215 :                      bool include_tparams__ = true,
 216 :                      bool include_gqs__ = true,
 217 :                      std::ostream* pstream__ = 0) const {
 218 :         typedef double local_scalar_t__;
 219 : 
 220 :         vars__.resize(0);
 221 :         stan::io::reader<local_scalar_t__> in__(params_r__, params_i__);
 222 :         static const char* function__ = "model4ad061e92827e_16a540c6086086816528e4524def24d9_namespace::write_array";
 223 :         (void) function__;  // dummy to suppress unused var warning
 224 : 
 225 :         // read-transform, write parameters
 226 :         double y = in__.scalar_constrain();
 227 :         vars__.push_back(y);
 228 : 
 229 :         double lp__ = 0.0;
 230 :         (void) lp__;  // dummy to suppress unused var warning
 231 :         stan::math::accumulator<double> lp_accum__;
 232 : 
 233 :         local_scalar_t__ DUMMY_VAR__(std::numeric_limits<double>::quiet_NaN());
 234 :         (void) DUMMY_VAR__;  // suppress unused var warning
 235 : 
 236 :         if (!include_tparams__ && !include_gqs__) return;
 237 : 
 238 :         try {
 239 :             if (!include_gqs__ && !include_tparams__) return;
 240 :             if (!include_gqs__) return;
 241 :         } catch (const std::exception& e) {
 242 :             stan::lang::rethrow_located(e, current_statement_begin__, prog_reader__());
 243 :             // Next line prevents compiler griping about no return
 244 :             throw std::runtime_error("*** IF YOU SEE THIS, PLEASE REPORT A BUG ***");
 245 :         }
 246 :     }
 247 : 
 248 :     template <typename RNG>
 249 :     void write_array(RNG& base_rng,
 250 :                      Eigen::Matrix<double,Eigen::Dynamic,1>& params_r,
 251 :                      Eigen::Matrix<double,Eigen::Dynamic,1>& vars,
 252 :                      bool include_tparams = true,
 253 :                      bool include_gqs = true,
 254 :                      std::ostream* pstream = 0) const {
 255 :       std::vector<double> params_r_vec(params_r.size());
 256 :       for (int i = 0; i < params_r.size(); ++i)
 257 :         params_r_vec[i] = params_r(i);
 258 :       std::vector<double> vars_vec;
 259 :       std::vector<int> params_i_vec;
 260 :       write_array(base_rng, params_r_vec, params_i_vec, vars_vec, include_tparams, include_gqs, pstream);
 261 :       vars.resize(vars_vec.size());
 262 :       for (int i = 0; i < vars.size(); ++i)
 263 :         vars(i) = vars_vec[i];
 264 :     }
 265 : 
 266 :     std::string model_name() const {
 267 :         return "model4ad061e92827e_16a540c6086086816528e4524def24d9";
 268 :     }
 269 : 
 270 : 
 271 :     void constrained_param_names(std::vector<std::string>& param_names__,
 272 :                                  bool include_tparams__ = true,
 273 :                                  bool include_gqs__ = true) const {
 274 :         std::stringstream param_name_stream__;
 275 :         param_name_stream__.str(std::string());
 276 :         param_name_stream__ << "y";
 277 :         param_names__.push_back(param_name_stream__.str());
 278 : 
 279 :         if (!include_gqs__ && !include_tparams__) return;
 280 : 
 281 :         if (include_tparams__) {
 282 :         }
 283 : 
 284 :         if (!include_gqs__) return;
 285 :     }
 286 : 
 287 : 
 288 :     void unconstrained_param_names(std::vector<std::string>& param_names__,
 289 :                                    bool include_tparams__ = true,
 290 :                                    bool include_gqs__ = true) const {
 291 :         std::stringstream param_name_stream__;
 292 :         param_name_stream__.str(std::string());
 293 :         param_name_stream__ << "y";
 294 :         param_names__.push_back(param_name_stream__.str());
 295 : 
 296 :         if (!include_gqs__ && !include_tparams__) return;
 297 : 
 298 :         if (include_tparams__) {
 299 :         }
 300 : 
 301 :         if (!include_gqs__) return;
 302 :     }
 303 : 
 304 : }; // model
 305 : 
 306 : }  // namespace
 307 : 
 308 : typedef model4ad061e92827e_16a540c6086086816528e4524def24d9_namespace::model4ad061e92827e_16a540c6086086816528e4524def24d9 stan_model;
 309 : 
 310 : #ifndef USING_R
 311 : 
 312 : stan::model::model_base& new_model(
 313 :         stan::io::var_context& data_context,
 314 :         unsigned int seed,
 315 :         std::ostream* msg_stream) {
 316 :   stan_model* m = new stan_model(data_context, seed, msg_stream);
 317 :   return *m;
 318 : }
 319 : 
 320 : #endif
 321 : 
 322 : 
 323 : 
 324 : #include <rstan_next/stan_fit.hpp>
 325 : 
 326 : struct stan_model_holder {
 327 :     stan_model_holder(rstan::io::rlist_ref_var_context rcontext,
 328 :                       unsigned int random_seed)
 329 :     : rcontext_(rcontext), random_seed_(random_seed)
 330 :      {
 331 :      }
 332 : 
 333 :    //stan::math::ChainableStack ad_stack;
 334 :    rstan::io::rlist_ref_var_context rcontext_;
 335 :    unsigned int random_seed_;
 336 : };
 337 : 
 338 : Rcpp::XPtr<stan::model::model_base> model_ptr(stan_model_holder* smh) {
 339 :   Rcpp::XPtr<stan::model::model_base> model_instance(new stan_model(smh->rcontext_, smh->random_seed_), true);
 340 :   return model_instance;
 341 : }
 342 : 
 343 : Rcpp::XPtr<rstan::stan_fit_base> fit_ptr(stan_model_holder* smh) {
 344 :   return Rcpp::XPtr<rstan::stan_fit_base>(new rstan::stan_fit(model_ptr(smh), smh->random_seed_), true);
 345 : }
 346 : 
 347 : std::string model_name(stan_model_holder* smh) {
 348 :   return model_ptr(smh).get()->model_name();
 349 : }
 350 : 
 351 : RCPP_MODULE(stan_fit4model4ad061e92827e_16a540c6086086816528e4524def24d9_mod){
 352 :   Rcpp::class_<stan_model_holder>("stan_fit4model4ad061e92827e_16a540c6086086816528e4524def24d9")
 353 :   .constructor<rstan::io::rlist_ref_var_context, unsigned int>()
 354 :   .method("model_ptr", &model_ptr)
 355 :   .method("fit_ptr", &fit_ptr)
 356 :   .method("model_name", &model_name)
 357 :   ;
 358 : }
 359 : 
 360 : 
 361 : // declarations
 362 : extern "C" {
 363 : SEXP file4ad064f36ecd7( ) ;
 364 : }
 365 : 
 366 : // definition
 367 : SEXP file4ad064f36ecd7() {
 368 :  return Rcpp::wrap("16a540c6086086816528e4524def24d9");
 369 : }
make cmd is
  make -f '/usr/lib/R/etc/Makeconf' -f '/usr/share/R/share/make/shlib.mk' CXX='$(CXX14) $(CXX14STD)' CXXFLAGS='$(CXX14FLAGS)' CXXPICFLAGS='$(CXX14PICFLAGS)' SHLIB_LDFLAGS='$(SHLIB_CXX14LDFLAGS)' SHLIB_LD='$(SHLIB_CXX14LD)' SHLIB='file4ad064f36ecd7.so' OBJECTS='file4ad064f36ecd7.o'

make would use
g++ -std=gnu++14 -I"/usr/share/R/include" -DNDEBUG   -I"/usr/local/lib/R/site-library/Rcpp/include/"  -I"/usr/local/lib/R/site-library/RcppEigen/include/"  -I"/usr/local/lib/R/site-library/RcppEigen/include/unsupported"  -I"/usr/local/lib/R/site-library/BH/include" -I"/usr/local/lib/R/site-library/StanHeaders/include/src/"  -I"/usr/local/lib/R/site-library/StanHeaders/include/"  -I"/usr/local/lib/R/site-library/RcppParallel/include/"  -I"/usr/local/lib/R/site-library/rstan/include" -DEIGEN_NO_DEBUG  -DBOOST_DISABLE_ASSERTS  -DBOOST_PENDING_INTEGER_LOG2_HPP  -DSTAN_THREADS  -DBOOST_NO_AUTO_PTR  -include '/usr/local/lib/R/site-library/StanHeaders/include/stan/math/prim/mat/fun/Eigen.hpp'  -D_REENTRANT -DRCPP_PARALLEL_USE_TBB=1      -fpic  -g -O2 -ffile-prefix-map=/build/r-base-XqSJAD/r-base-4.0.4=. -fstack-protector-strong -Wformat -Werror=format-security -Wdate-time -D_FORTIFY_SOURCE=2 -g  -c file4ad064f36ecd7.cpp -o file4ad064f36ecd7.o
if test  "zfile4ad064f36ecd7.o" != "z"; then \
  echo g++ -std=gnu++14 -shared -L"/usr/lib/R/lib" -Wl,-z,relro -o file4ad064f36ecd7.so file4ad064f36ecd7.o  '/usr/local/lib/R/site-library/rstan/lib//libStanServices.a' -L'/usr/local/lib/R/site-library/StanHeaders/lib/' -lStanHeaders -L'/usr/local/lib/R/site-library/RcppParallel/lib/' -ltbb  -L"/usr/lib/R/lib" -lR; \
  g++ -std=gnu++14 -shared -L"/usr/lib/R/lib" -Wl,-z,relro -o file4ad064f36ecd7.so file4ad064f36ecd7.o  '/usr/local/lib/R/site-library/rstan/lib//libStanServices.a' -L'/usr/local/lib/R/site-library/StanHeaders/lib/' -lStanHeaders -L'/usr/local/lib/R/site-library/RcppParallel/lib/' -ltbb  -L"/usr/lib/R/lib" -lR; \
fi

[ See next message for followup ]

Ran in a terminal, almost identical result (but the floating point excepiion is printed) :

> example(stan_model,package="rstan",run.dontrun=T)
Loading required package: StanHeaders
Loading required package: ggplot2
rstan (Version 2.21.2, GitRev: 2e1f913d3ca3)
For execution on a local, multicore CPU with excess RAM we recommend calling
options(mc.cores = parallel::detectCores()).
To avoid recompilation of unchanged Stan programs, we recommend calling
rstan_options(auto_write = TRUE)

stn_md> stancode <- 'data {real y_mean;} parameters {real y;} model {y ~ normal(y_mean,1);}'

stn_md> mod <- stan_model(model_code = stancode, verbose = TRUE)

TRANSLATING MODEL '16a540c6086086816528e4524def24d9' FROM Stan CODE TO C++ CODE NOW.
successful in parsing the Stan model '16a540c6086086816528e4524def24d9'.
COMPILING THE C++ CODE FOR MODEL '16a540c6086086816528e4524def24d9' NOW.
OS: x86_64, linux-gnu; rstan: 2.21.2; Rcpp: 1.0.6; inline: 0.3.17 
 >> setting environment variables: 
PKG_LIBS =  '/usr/local/lib/R/site-library/rstan/lib//libStanServices.a' -L'/usr/local/lib/R/site-library/StanHeaders/lib/' -lStanHeaders -L'/usr/local/lib/R/site-library/RcppParallel/lib/' -ltbb
PKG_CPPFLAGS =   -I"/usr/local/lib/R/site-library/Rcpp/include/"  -I"/usr/local/lib/R/site-library/RcppEigen/include/"  -I"/usr/local/lib/R/site-library/RcppEigen/include/unsupported"  -I"/usr/local/lib/R/site-library/BH/include" -I"/usr/local/lib/R/site-library/StanHeaders/include/src/"  -I"/usr/local/lib/R/site-library/StanHeaders/include/"  -I"/usr/local/lib/R/site-library/RcppParallel/include/"  -I"/usr/local/lib/R/site-library/rstan/include" -DEIGEN_NO_DEBUG  -DBOOST_DISABLE_ASSERTS  -DBOOST_PENDING_INTEGER_LOG2_HPP  -DSTAN_THREADS  -DBOOST_NO_AUTO_PTR  -include '/usr/local/lib/R/site-library/StanHeaders/include/stan/math/prim/mat/fun/Eigen.hpp'  -D_REENTRANT -DRCPP_PARALLEL_USE_TBB=1 
 >> Program source :

   1 : 
   2 : // includes from the plugin
   3 : // [[Rcpp::plugins(cpp14)]]
   4 : 
   5 : 
   6 : // user includes
   7 : #include <Rcpp.h>
   8 : #include <rstan/io/rlist_ref_var_context.hpp>
   9 : #include <rstan/io/r_ostream.hpp>
  10 : #include <rstan/stan_args.hpp>
  11 : #include <boost/integer/integer_log2.hpp>
  12 : // Code generated by Stan version 2.21.0
  13 : 
  14 : #include <stan/model/model_header.hpp>
  15 : 
  16 : namespace model4b3283cbc1b3_16a540c6086086816528e4524def24d9_namespace {
  17 : 
  18 : using std::istream;
  19 : using std::string;
  20 : using std::stringstream;
  21 : using std::vector;
  22 : using stan::io::dump;
  23 : using stan::math::lgamma;
  24 : using stan::model::prob_grad;
  25 : using namespace stan::math;
  26 : 
  27 : static int current_statement_begin__;
  28 : 
  29 : stan::io::program_reader prog_reader__() {
  30 :     stan::io::program_reader reader;
  31 :     reader.add_event(0, 0, "start", "model4b3283cbc1b3_16a540c6086086816528e4524def24d9");
  32 :     reader.add_event(3, 1, "end", "model4b3283cbc1b3_16a540c6086086816528e4524def24d9");
  33 :     return reader;
  34 : }
  35 : 
  36 : class model4b3283cbc1b3_16a540c6086086816528e4524def24d9
  37 :   : public stan::model::model_base_crtp<model4b3283cbc1b3_16a540c6086086816528e4524def24d9> {
  38 : private:
  39 :         double y_mean;
  40 : public:
  41 :     model4b3283cbc1b3_16a540c6086086816528e4524def24d9(rstan::io::rlist_ref_var_context& context__,
  42 :         std::ostream* pstream__ = 0)
  43 :         : model_base_crtp(0) {
  44 :         ctor_body(context__, 0, pstream__);
  45 :     }
  46 : 
  47 :     model4b3283cbc1b3_16a540c6086086816528e4524def24d9(stan::io::var_context& context__,
  48 :         unsigned int random_seed__,
  49 :         std::ostream* pstream__ = 0)
  50 :         : model_base_crtp(0) {
  51 :         ctor_body(context__, random_seed__, pstream__);
  52 :     }
  53 : 
  54 :     void ctor_body(stan::io::var_context& context__,
  55 :                    unsigned int random_seed__,
  56 :                    std::ostream* pstream__) {
  57 :         typedef double local_scalar_t__;
  58 : 
  59 :         boost::ecuyer1988 base_rng__ =
  60 :           stan::services::util::create_rng(random_seed__, 0);
  61 :         (void) base_rng__;  // suppress unused var warning
  62 : 
  63 :         current_statement_begin__ = -1;
  64 : 
  65 :         static const char* function__ = "model4b3283cbc1b3_16a540c6086086816528e4524def24d9_namespace::model4b3283cbc1b3_16a540c6086086816528e4524def24d9";
  66 :         (void) function__;  // dummy to suppress unused var warning
  67 :         size_t pos__;
  68 :         (void) pos__;  // dummy to suppress unused var warning
  69 :         std::vector<int> vals_i__;
  70 :         std::vector<double> vals_r__;
  71 :         local_scalar_t__ DUMMY_VAR__(std::numeric_limits<double>::quiet_NaN());
  72 :         (void) DUMMY_VAR__;  // suppress unused var warning
  73 : 
  74 :         try {
  75 :             // initialize data block variables from context__
  76 :             current_statement_begin__ = 1;
  77 :             context__.validate_dims("data initialization", "y_mean", "double", context__.to_vec());
  78 :             y_mean = double(0);
  79 :             vals_r__ = context__.vals_r("y_mean");
  80 :             pos__ = 0;
  81 :             y_mean = vals_r__[pos__++];
  82 : 
  83 : 
  84 :             // initialize transformed data variables
  85 :             // execute transformed data statements
  86 : 
  87 :             // validate transformed data
  88 : 
  89 :             // validate, set parameter ranges
  90 :             num_params_r__ = 0U;
  91 :             param_ranges_i__.clear();
  92 :             current_statement_begin__ = 1;
  93 :             num_params_r__ += 1;
  94 :         } catch (const std::exception& e) {
  95 :             stan::lang::rethrow_located(e, current_statement_begin__, prog_reader__());
  96 :             // Next line prevents compiler griping about no return
  97 :             throw std::runtime_error("*** IF YOU SEE THIS, PLEASE REPORT A BUG ***");
  98 :         }
  99 :     }
 100 : 
 101 :     ~model4b3283cbc1b3_16a540c6086086816528e4524def24d9() { }
 102 : 
 103 : 
 104 :     void transform_inits(const stan::io::var_context& context__,
 105 :                          std::vector<int>& params_i__,
 106 :                          std::vector<double>& params_r__,
 107 :                          std::ostream* pstream__) const {
 108 :         typedef double local_scalar_t__;
 109 :         stan::io::writer<double> writer__(params_r__, params_i__);
 110 :         size_t pos__;
 111 :         (void) pos__; // dummy call to supress warning
 112 :         std::vector<double> vals_r__;
 113 :         std::vector<int> vals_i__;
 114 : 
 115 :         current_statement_begin__ = 1;
 116 :         if (!(context__.contains_r("y")))
 117 :             stan::lang::rethrow_located(std::runtime_error(std::string("Variable y missing")), current_statement_begin__, prog_reader__());
 118 :         vals_r__ = context__.vals_r("y");
 119 :         pos__ = 0U;
 120 :         context__.validate_dims("parameter initialization", "y", "double", context__.to_vec());
 121 :         double y(0);
 122 :         y = vals_r__[pos__++];
 123 :         try {
 124 :             writer__.scalar_unconstrain(y);
 125 :         } catch (const std::exception& e) {
 126 :             stan::lang::rethrow_located(std::runtime_error(std::string("Error transforming variable y: ") + e.what()), current_statement_begin__, prog_reader__());
 127 :         }
 128 : 
 129 :         params_r__ = writer__.data_r();
 130 :         params_i__ = writer__.data_i();
 131 :     }
 132 : 
 133 :     void transform_inits(const stan::io::var_context& context,
 134 :                          Eigen::Matrix<double, Eigen::Dynamic, 1>& params_r,
 135 :                          std::ostream* pstream__) const {
 136 :       std::vector<double> params_r_vec;
 137 :       std::vector<int> params_i_vec;
 138 :       transform_inits(context, params_i_vec, params_r_vec, pstream__);
 139 :       params_r.resize(params_r_vec.size());
 140 :       for (int i = 0; i < params_r.size(); ++i)
 141 :         params_r(i) = params_r_vec[i];
 142 :     }
 143 : 
 144 : 
 145 :     template <bool propto__, bool jacobian__, typename T__>
 146 :     T__ log_prob(std::vector<T__>& params_r__,
 147 :                  std::vector<int>& params_i__,
 148 :                  std::ostream* pstream__ = 0) const {
 149 : 
 150 :         typedef T__ local_scalar_t__;
 151 : 
 152 :         local_scalar_t__ DUMMY_VAR__(std::numeric_limits<double>::quiet_NaN());
 153 :         (void) DUMMY_VAR__;  // dummy to suppress unused var warning
 154 : 
 155 :         T__ lp__(0.0);
 156 :         stan::math::accumulator<T__> lp_accum__;
 157 :         try {
 158 :             stan::io::reader<local_scalar_t__> in__(params_r__, params_i__);
 159 : 
 160 :             // model parameters
 161 :             current_statement_begin__ = 1;
 162 :             local_scalar_t__ y;
 163 :             (void) y;  // dummy to suppress unused var warning
 164 :             if (jacobian__)
 165 :                 y = in__.scalar_constrain(lp__);
 166 :             else
 167 :                 y = in__.scalar_constrain();
 168 : 
 169 :             // model body
 170 : 
 171 :             current_statement_begin__ = 1;
 172 :             lp_accum__.add(normal_log<propto__>(y, y_mean, 1));
 173 : 
 174 :         } catch (const std::exception& e) {
 175 :             stan::lang::rethrow_located(e, current_statement_begin__, prog_reader__());
 176 :             // Next line prevents compiler griping about no return
 177 :             throw std::runtime_error("*** IF YOU SEE THIS, PLEASE REPORT A BUG ***");
 178 :         }
 179 : 
 180 :         lp_accum__.add(lp__);
 181 :         return lp_accum__.sum();
 182 : 
 183 :     } // log_prob()
 184 : 
 185 :     template <bool propto, bool jacobian, typename T_>
 186 :     T_ log_prob(Eigen::Matrix<T_,Eigen::Dynamic,1>& params_r,
 187 :                std::ostream* pstream = 0) const {
 188 :       std::vector<T_> vec_params_r;
 189 :       vec_params_r.reserve(params_r.size());
 190 :       for (int i = 0; i < params_r.size(); ++i)
 191 :         vec_params_r.push_back(params_r(i));
 192 :       std::vector<int> vec_params_i;
 193 :       return log_prob<propto,jacobian,T_>(vec_params_r, vec_params_i, pstream);
 194 :     }
 195 : 
 196 : 
 197 :     void get_param_names(std::vector<std::string>& names__) const {
 198 :         names__.resize(0);
 199 :         names__.push_back("y");
 200 :     }
 201 : 
 202 : 
 203 :     void get_dims(std::vector<std::vector<size_t> >& dimss__) const {
 204 :         dimss__.resize(0);
 205 :         std::vector<size_t> dims__;
 206 :         dims__.resize(0);
 207 :         dimss__.push_back(dims__);
 208 :     }
 209 : 
 210 :     template <typename RNG>
 211 :     void write_array(RNG& base_rng__,
 212 :                      std::vector<double>& params_r__,
 213 :                      std::vector<int>& params_i__,
 214 :                      std::vector<double>& vars__,
 215 :                      bool include_tparams__ = true,
 216 :                      bool include_gqs__ = true,
 217 :                      std::ostream* pstream__ = 0) const {
 218 :         typedef double local_scalar_t__;
 219 : 
 220 :         vars__.resize(0);
 221 :         stan::io::reader<local_scalar_t__> in__(params_r__, params_i__);
 222 :         static const char* function__ = "model4b3283cbc1b3_16a540c6086086816528e4524def24d9_namespace::write_array";
 223 :         (void) function__;  // dummy to suppress unused var warning
 224 : 
 225 :         // read-transform, write parameters
 226 :         double y = in__.scalar_constrain();
 227 :         vars__.push_back(y);
 228 : 
 229 :         double lp__ = 0.0;
 230 :         (void) lp__;  // dummy to suppress unused var warning
 231 :         stan::math::accumulator<double> lp_accum__;
 232 : 
 233 :         local_scalar_t__ DUMMY_VAR__(std::numeric_limits<double>::quiet_NaN());
 234 :         (void) DUMMY_VAR__;  // suppress unused var warning
 235 : 
 236 :         if (!include_tparams__ && !include_gqs__) return;
 237 : 
 238 :         try {
 239 :             if (!include_gqs__ && !include_tparams__) return;
 240 :             if (!include_gqs__) return;
 241 :         } catch (const std::exception& e) {
 242 :             stan::lang::rethrow_located(e, current_statement_begin__, prog_reader__());
 243 :             // Next line prevents compiler griping about no return
 244 :             throw std::runtime_error("*** IF YOU SEE THIS, PLEASE REPORT A BUG ***");
 245 :         }
 246 :     }
 247 : 
 248 :     template <typename RNG>
 249 :     void write_array(RNG& base_rng,
 250 :                      Eigen::Matrix<double,Eigen::Dynamic,1>& params_r,
 251 :                      Eigen::Matrix<double,Eigen::Dynamic,1>& vars,
 252 :                      bool include_tparams = true,
 253 :                      bool include_gqs = true,
 254 :                      std::ostream* pstream = 0) const {
 255 :       std::vector<double> params_r_vec(params_r.size());
 256 :       for (int i = 0; i < params_r.size(); ++i)
 257 :         params_r_vec[i] = params_r(i);
 258 :       std::vector<double> vars_vec;
 259 :       std::vector<int> params_i_vec;
 260 :       write_array(base_rng, params_r_vec, params_i_vec, vars_vec, include_tparams, include_gqs, pstream);
 261 :       vars.resize(vars_vec.size());
 262 :       for (int i = 0; i < vars.size(); ++i)
 263 :         vars(i) = vars_vec[i];
 264 :     }
 265 : 
 266 :     std::string model_name() const {
 267 :         return "model4b3283cbc1b3_16a540c6086086816528e4524def24d9";
 268 :     }
 269 : 
 270 : 
 271 :     void constrained_param_names(std::vector<std::string>& param_names__,
 272 :                                  bool include_tparams__ = true,
 273 :                                  bool include_gqs__ = true) const {
 274 :         std::stringstream param_name_stream__;
 275 :         param_name_stream__.str(std::string());
 276 :         param_name_stream__ << "y";
 277 :         param_names__.push_back(param_name_stream__.str());
 278 : 
 279 :         if (!include_gqs__ && !include_tparams__) return;
 280 : 
 281 :         if (include_tparams__) {
 282 :         }
 283 : 
 284 :         if (!include_gqs__) return;
 285 :     }
 286 : 
 287 : 
 288 :     void unconstrained_param_names(std::vector<std::string>& param_names__,
 289 :                                    bool include_tparams__ = true,
 290 :                                    bool include_gqs__ = true) const {
 291 :         std::stringstream param_name_stream__;
 292 :         param_name_stream__.str(std::string());
 293 :         param_name_stream__ << "y";
 294 :         param_names__.push_back(param_name_stream__.str());
 295 : 
 296 :         if (!include_gqs__ && !include_tparams__) return;
 297 : 
 298 :         if (include_tparams__) {
 299 :         }
 300 : 
 301 :         if (!include_gqs__) return;
 302 :     }
 303 : 
 304 : }; // model
 305 : 
 306 : }  // namespace
 307 : 
 308 : typedef model4b3283cbc1b3_16a540c6086086816528e4524def24d9_namespace::model4b3283cbc1b3_16a540c6086086816528e4524def24d9 stan_model;
 309 : 
 310 : #ifndef USING_R
 311 : 
 312 : stan::model::model_base& new_model(
 313 :         stan::io::var_context& data_context,
 314 :         unsigned int seed,
 315 :         std::ostream* msg_stream) {
 316 :   stan_model* m = new stan_model(data_context, seed, msg_stream);
 317 :   return *m;
 318 : }
 319 : 
 320 : #endif
 321 : 
 322 : 
 323 : 
 324 : #include <rstan_next/stan_fit.hpp>
 325 : 
 326 : struct stan_model_holder {
 327 :     stan_model_holder(rstan::io::rlist_ref_var_context rcontext,
 328 :                       unsigned int random_seed)
 329 :     : rcontext_(rcontext), random_seed_(random_seed)
 330 :      {
 331 :      }
 332 : 
 333 :    //stan::math::ChainableStack ad_stack;
 334 :    rstan::io::rlist_ref_var_context rcontext_;
 335 :    unsigned int random_seed_;
 336 : };
 337 : 
 338 : Rcpp::XPtr<stan::model::model_base> model_ptr(stan_model_holder* smh) {
 339 :   Rcpp::XPtr<stan::model::model_base> model_instance(new stan_model(smh->rcontext_, smh->random_seed_), true);
 340 :   return model_instance;
 341 : }
 342 : 
 343 : Rcpp::XPtr<rstan::stan_fit_base> fit_ptr(stan_model_holder* smh) {
 344 :   return Rcpp::XPtr<rstan::stan_fit_base>(new rstan::stan_fit(model_ptr(smh), smh->random_seed_), true);
 345 : }
 346 : 
 347 : std::string model_name(stan_model_holder* smh) {
 348 :   return model_ptr(smh).get()->model_name();
 349 : }
 350 : 
 351 : RCPP_MODULE(stan_fit4model4b3283cbc1b3_16a540c6086086816528e4524def24d9_mod){
 352 :   Rcpp::class_<stan_model_holder>("stan_fit4model4b3283cbc1b3_16a540c6086086816528e4524def24d9")
 353 :   .constructor<rstan::io::rlist_ref_var_context, unsigned int>()
 354 :   .method("model_ptr", &model_ptr)
 355 :   .method("fit_ptr", &fit_ptr)
 356 :   .method("model_name", &model_name)
 357 :   ;
 358 : }
 359 : 
 360 : 
 361 : // declarations
 362 : extern "C" {
 363 : SEXP file4b328464b7e31( ) ;
 364 : }
 365 : 
 366 : // definition
 367 : SEXP file4b328464b7e31() {
 368 :  return Rcpp::wrap("16a540c6086086816528e4524def24d9");
 369 : }
make cmd is
  make -f '/usr/lib/R/etc/Makeconf' -f '/usr/share/R/share/make/shlib.mk' CXX='$(CXX14) $(CXX14STD)' CXXFLAGS='$(CXX14FLAGS)' CXXPICFLAGS='$(CXX14PICFLAGS)' SHLIB_LDFLAGS='$(SHLIB_CXX14LDFLAGS)' SHLIB_LD='$(SHLIB_CXX14LD)' SHLIB='file4b328464b7e31.so' OBJECTS='file4b328464b7e31.o'

make would use
g++ -std=gnu++14 -I"/usr/share/R/include" -DNDEBUG   -I"/usr/local/lib/R/site-library/Rcpp/include/"  -I"/usr/local/lib/R/site-library/RcppEigen/include/"  -I"/usr/local/lib/R/site-library/RcppEigen/include/unsupported"  -I"/usr/local/lib/R/site-library/BH/include" -I"/usr/local/lib/R/site-library/StanHeaders/include/src/"  -I"/usr/local/lib/R/site-library/StanHeaders/include/"  -I"/usr/local/lib/R/site-library/RcppParallel/include/"  -I"/usr/local/lib/R/site-library/rstan/include" -DEIGEN_NO_DEBUG  -DBOOST_DISABLE_ASSERTS  -DBOOST_PENDING_INTEGER_LOG2_HPP  -DSTAN_THREADS  -DBOOST_NO_AUTO_PTR  -include '/usr/local/lib/R/site-library/StanHeaders/include/stan/math/prim/mat/fun/Eigen.hpp'  -D_REENTRANT -DRCPP_PARALLEL_USE_TBB=1      -fpic  -g -O2 -ffile-prefix-map=/build/r-base-XqSJAD/r-base-4.0.4=. -fstack-protector-strong -Wformat -Werror=format-security -Wdate-time -D_FORTIFY_SOURCE=2 -g  -c file4b328464b7e31.cpp -o file4b328464b7e31.o
if test  "zfile4b328464b7e31.o" != "z"; then \
  echo g++ -std=gnu++14 -shared -L"/usr/lib/R/lib" -Wl,-z,relro -o file4b328464b7e31.so file4b328464b7e31.o  '/usr/local/lib/R/site-library/rstan/lib//libStanServices.a' -L'/usr/local/lib/R/site-library/StanHeaders/lib/' -lStanHeaders -L'/usr/local/lib/R/site-library/RcppParallel/lib/' -ltbb  -L"/usr/lib/R/lib" -lR; \
  g++ -std=gnu++14 -shared -L"/usr/lib/R/lib" -Wl,-z,relro -o file4b328464b7e31.so file4b328464b7e31.o  '/usr/local/lib/R/site-library/rstan/lib//libStanServices.a' -L'/usr/local/lib/R/site-library/StanHeaders/lib/' -lStanHeaders -L'/usr/local/lib/R/site-library/RcppParallel/lib/' -ltbb  -L"/usr/lib/R/lib" -lR; \
fi
Exception en point flottant

HTH,

The first thing to try is a reinstall of rstan and stanheaders, as updates in other R packages has broken compilation before.

Start by removing any existing installs, and any RData files that would be automatically loaded that might contain stan objects:

remove.packages(c("rstan","StanHeaders"))
if (file.exists(".RData")) file.remove(".RData")

Then restart R and reinstall the packages (making sure that they’re built from source):

# Compile packages using all cores
Sys.setenv(MAKEFLAGS = paste0("-j",parallel::detectCores()))

install.packages(c("StanHeaders","rstan"),type="source")

Start by removing any existing installs,

(More or less) fine.

and any RData files that would be automatically loaded that might contain stan objects:

Ouch ! Not really fun for workspaces containing preliminary work (plts, exploratory analyses…). Cleaning tle momory by expunging rstan-created objects and save.imageing should be sufficient. No ?

Then restart R and reinstall the packages (making sure that they’re built from source):

I’ll try that and keep you posted.

One more data point : cmdstanr and brms using this latter backend seem to work fine…

HTH,

Oh yeah that should be fine as well.

FWIW : reinstalling StanHeaders, rstan and brms allowed the latter, using its default backend (rstan), to re-create a previously created model. This rain dance seemed effective.

But it’s still a rain dance…

Shouldn’t this be added to the installation instructions ? Or possibly justify a “The care and feeding of your (r)Stan installation” chapter in the documentation ?

Anyway, a big “thank you” for your help !