I work with the same data and Stan code using CmdStan 2.19.1 on two clusters. Even with the same random seed=3412, the sampling results are not exactly the same for the mean estimates and the number of divergences.
Q: Is it necessary to have completely identical hardware and C++ complier in order to exactly replicate the sampling results ?
Results on the faster cluster:
#=====================================================================
# In folder: 20190625.130259_6083422 [75,200,10,1,**3412**,600,200,0.98,11,dense_e,4,J90c]"
#=====================================================================
4 chains: each with iter=(200,200,200,200); warmup=(600,600,600,600); thin=(1,1,1,1); 3200 iterations saved.
Warmup took (11852, 12628, 11884, 13546) seconds, 13.9 hours total
Sampling took (2372, 3629, 3075, 3553) seconds, 3.51 hours total
Mean MCSE StdDev 5% 50% 95% N_Eff N_Eff/s R_hat
lp__ 1.87e+04 7.59e-01 1.33e+01 1.86e+04 1.87e+04 1.87e+04 3.08e+02 2.44e-02 1.01e+00
accept_stat__ 9.74e-01 2.01e-03 5.47e-02 8.99e-01 9.90e-01 1.00e+00 7.42e+02 5.87e-02 9.99e-01
stepsize__ 1.54e-02 1.38e-03 1.96e-03 1.32e-02 1.64e-02 1.81e-02 2.01e+00 1.59e-04 2.83e+14
treedepth__ 9.63e+00 2.76e-01 4.87e-01 9.00e+00 1.00e+01 1.00e+01 3.11e+00 2.47e-04 1.68e+00
n_leapfrog__ 8.87e+02 1.10e+02 2.47e+02 5.11e+02 1.02e+03 1.02e+03 5.07e+00 4.01e-04 1.31e+00
divergent__ 2.50e-03 -nan 5.00e-02 0.00e+00 0.00e+00 0.00e+00 -nan -nan 9.99e-01
energy__ -1.85e+04 1.10e+00 1.81e+01 -1.85e+04 -1.85e+04 -1.85e+04 2.72e+02 2.15e-02 1.02e+00
sd_y 8.01e-02 2.22e-05 6.05e-04 7.91e-02 8.00e-02 8.11e-02 7.40e+02 5.86e-02 9.99e-01
mu_u1 9.26e-02 2.98e-04 9.62e-03 7.68e-02 9.31e-02 1.09e-01 1.04e+03 8.24e-02 9.97e-01
mu_alpha 3.89e-02 7.01e-05 2.01e-03 3.57e-02 3.88e-02 4.23e-02 8.23e+02 6.52e-02 1.00e+00
beta 6.04e-01 2.72e-04 7.55e-03 5.91e-01 6.04e-01 6.17e-01 7.71e+02 6.11e-02 1.00e+00
theta 1.47e-01 1.16e-04 3.23e-03 1.42e-01 1.47e-01 1.52e-01 7.75e+02 6.13e-02 1.00e+00
sd_season 9.64e-02 1.41e-04 4.21e-03 8.93e-02 9.64e-02 1.03e-01 8.96e+02 7.09e-02 1.01e+00
mu_season[1] -1.15e-01 3.02e-04 1.04e-02 -1.32e-01 -1.15e-01 -9.82e-02 1.18e+03 9.34e-02 9.96e-01
mu_season[2] -6.00e-02 3.14e-04 1.05e-02 -7.72e-02 -5.97e-02 -4.28e-02 1.11e+03 8.83e-02 9.99e-01
mu_season[3] 1.39e-01 2.92e-04 1.03e-02 1.22e-01 1.39e-01 1.57e-01 1.24e+03 9.84e-02 1.00e+00
p[1] 6.63e-01 1.73e-03 4.72e-02 6.05e-01 6.51e-01 7.52e-01 7.42e+02 5.88e-02 1.00e+00
p[2] 6.21e-01 2.03e-04 5.94e-03 6.11e-01 6.21e-01 6.30e-01 8.55e+02 6.77e-02 9.99e-01
p[3] 6.28e-01 2.49e-03 6.78e-02 5.45e-01 6.10e-01 7.55e-01 7.41e+02 5.87e-02 1.00e+00
g[1] 8.41e-01 1.74e-03 4.87e-02 7.64e-01 8.41e-01 9.25e-01 7.84e+02 6.20e-02 9.98e-01
g[2] 3.50e-01 7.93e-04 2.27e-02 3.13e-01 3.50e-01 3.87e-01 8.22e+02 6.51e-02 1.00e+00
w[1] 7.71e-01 2.50e-03 6.83e-02 6.56e-01 7.73e-01 8.81e-01 7.46e+02 5.91e-02 9.99e-01
w[2] 1.42e-01 4.38e-04 1.25e-02 1.21e-01 1.42e-01 1.62e-01 8.10e+02 6.41e-02 9.98e-01
w[3] 6.36e-01 7.88e-04 2.24e-02 5.98e-01 6.36e-01 6.73e-01 8.11e+02 6.42e-02 1.00e+00
d[1] 6.83e-02 4.59e-04 1.15e-02 4.93e-02 6.84e-02 8.80e-02 6.23e+02 4.93e-02 1.01e+00
d[2] 6.93e-01 3.66e-04 1.03e-02 6.76e-01 6.93e-01 7.11e-01 7.85e+02 6.22e-02 9.97e-01
d[3] 2.39e-01 4.45e-04 1.15e-02 2.20e-01 2.39e-01 2.58e-01 6.70e+02 5.31e-02 9.99e-01
Warning: non-fatal error reading adapation data
Warning: non-fatal error reading adapation data
Warning: non-fatal error reading adapation data
Warning: non-fatal error reading adapation data
2 of 3200 (0.062%) transitions ended with a divergence. These divergent transitions indicate that HMC is not fully able to explore the posterior distribution. Try rerunning with adapt delta set to a larger value and see if the divergences vanish. If increasing adapt delta towards 1 does not remove the divergences then you will likely need to reparameterize your model.
Results on the slower cluster:
#=========================================================================
# In folder: 20190625.193309_34194.solon [75,200,10,1,**3412**,600,200,0.98,11,dense_e,4,J90c]"
#=========================================================================
4 chains: each with iter=(200,200,200,200); warmup=(600,600,600,600); thin=(1,1,1,1); 3200 iterations saved.
Warmup took (20245, 21852, 23224, 24925) seconds, 25.1 hours total
Sampling took (3761, 6639, 6824, 6219) seconds, 6.51 hours total
Mean MCSE StdDev 5% 50% 95% N_Eff N_Eff/s R_hat
lp__ 1.87e+04 7.03e-01 1.22e+01 1.86e+04 1.87e+04 1.87e+04 3.02e+02 1.29e-02 1.01e+00
accept_stat__ 9.65e-01 1.37e-02 1.13e-01 8.96e-01 9.91e-01 1.00e+00 6.80e+01 2.90e-03 1.04e+00
stepsize__ 1.53e-02 -nan 2.26e-03 1.34e-02 1.54e-02 1.89e-02 -nan -nan 3.54e+14
treedepth__ 9.65e+00 3.22e-01 6.28e-01 9.00e+00 1.00e+01 1.00e+01 3.80e+00 1.62e-04 1.47e+00
n_leapfrog__ 8.93e+02 1.37e+02 2.49e+02 5.11e+02 1.02e+03 1.02e+03 3.31e+00 1.41e-04 1.60e+00
divergent__ 5.00e-03 -nan 7.06e-02 0.00e+00 0.00e+00 0.00e+00 -nan -nan 1.02e+00
energy__ -1.85e+04 1.02e+00 1.75e+01 -1.85e+04 -1.85e+04 -1.85e+04 2.94e+02 1.25e-02 1.00e+00
sd_y 8.00e-02 2.32e-05 6.04e-04 7.91e-02 8.00e-02 8.12e-02 6.75e+02 2.88e-02 1.00e+00
mu_u1 9.22e-02 3.21e-04 9.02e-03 7.65e-02 9.26e-02 1.06e-01 7.90e+02 3.37e-02 1.00e+00
mu_alpha 3.88e-02 7.23e-05 2.02e-03 3.53e-02 3.89e-02 4.20e-02 7.84e+02 3.34e-02 1.00e+00
beta 6.04e-01 2.66e-04 7.59e-03 5.92e-01 6.04e-01 6.17e-01 8.12e+02 3.46e-02 9.96e-01
theta 1.47e-01 1.24e-04 3.20e-03 1.41e-01 1.47e-01 1.52e-01 6.68e+02 2.85e-02 9.96e-01
sd_season 9.64e-02 1.59e-04 4.12e-03 8.96e-02 9.63e-02 1.03e-01 6.69e+02 2.86e-02 1.00e+00
mu_season[1] -1.15e-01 3.26e-04 1.01e-02 -1.31e-01 -1.15e-01 -9.95e-02 9.56e+02 4.08e-02 9.97e-01
mu_season[2] -6.03e-02 3.31e-04 9.65e-03 -7.60e-02 -6.03e-02 -4.50e-02 8.50e+02 3.62e-02 9.98e-01
mu_season[3] 1.39e-01 3.88e-04 1.01e-02 1.22e-01 1.39e-01 1.55e-01 6.83e+02 2.91e-02 1.00e+00
p[1] 6.63e-01 1.84e-03 4.84e-02 6.03e-01 6.54e-01 7.57e-01 6.96e+02 2.97e-02 1.00e+00
p[2] 6.21e-01 1.90e-04 5.53e-03 6.12e-01 6.21e-01 6.31e-01 8.49e+02 3.62e-02 9.98e-01
p[3] 6.27e-01 2.61e-03 6.93e-02 5.41e-01 6.15e-01 7.61e-01 7.06e+02 3.01e-02 1.00e+00
g[1] 8.41e-01 1.68e-03 4.63e-02 7.64e-01 8.41e-01 9.20e-01 7.56e+02 3.23e-02 1.00e+00
g[2] 3.49e-01 7.99e-04 2.19e-02 3.14e-01 3.49e-01 3.86e-01 7.54e+02 3.21e-02 9.99e-01
w[1] 7.69e-01 2.50e-03 6.60e-02 6.59e-01 7.72e-01 8.74e-01 6.99e+02 2.98e-02 1.00e+00
w[2] 1.42e-01 4.30e-04 1.18e-02 1.23e-01 1.42e-01 1.61e-01 7.56e+02 3.22e-02 9.99e-01
w[3] 6.35e-01 7.87e-04 2.16e-02 5.99e-01 6.35e-01 6.70e-01 7.55e+02 3.22e-02 1.00e+00
d[1] 6.82e-02 4.20e-04 1.16e-02 5.00e-02 6.85e-02 8.65e-02 7.60e+02 3.24e-02 1.00e+00
d[2] 6.92e-01 3.53e-04 9.73e-03 6.75e-01 6.93e-01 7.08e-01 7.61e+02 3.25e-02 1.00e+00
d[3] 2.40e-01 4.02e-04 1.18e-02 2.21e-01 2.39e-01 2.59e-01 8.63e+02 3.68e-02 9.97e-01
Warning: non-fatal error reading adapation data
Warning: non-fatal error reading adapation data
Warning: non-fatal error reading adapation data
Warning: non-fatal error reading adapation data
4 of 3200 (0.12%) transitions ended with a divergence. These divergent transitions indicate that HMC is not fully able to explore the posterior distribution. Try rerunning with adapt delta set to a larger value and see if the divergences vanish. If increasing adapt delta towards 1 does not remove the divergences then you will likely need to reparameterize your model.