Hi there. I have finished fitting a multilevel regression model (binomial response, categorical predictors). The issue I am having is understanding whether to be concerned with the apparent spread of the posterior distribution of the intercept parameter when I plot the posterior model (using mcmc_areas). I have attached the output:
It seems like the posterior distribution over the intercept is spread far too widely across parameter values (ranging from ~-10 to ~6). But, I am not sure; is this something to be concerned about? As far as I can tell, the posterior model parameter values do not look abnormal (below), and the tails of the other parameter estimates do not appear abnormal. On the other hand, if this is something I should be concerned about, how might I go about fixing this?
Here is the code I used to specify the model:
comp_glmm2 ā brm(values_anna_bernoulli ~ age_group * speaker + order_comp_prod + (speaker|participant_id) + (1|comp_trial),
data = wepc_comp,
family = bernoulli,
chains = 4,
iter = 10000,
warmup = 2000,
control = list(adapt_delta = 0.9999),
save_pars = save_pars(all = TRUE),
cores = 4,
seed = 31)
Here is the model output:
Family: bernoulli
Links: mu = logit
Formula: values_anna_bernoulli ~ age_group * speaker + order_comp_prod + (speaker | participant_id) + (1 | comp_trial)
Data: wepc_comp (Number of observations: 236)
Samples: 4 chains, each with iter = 10000; warmup = 2000; thin = 1;
total post-warmup samples = 32000
Group-Level Effects:
~comp_trial (Number of levels: 2)
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
sd(Intercept) 0.89 1.08 0.02 3.80 1.00 9377 14010
~participant_id (Number of levels: 61)
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
sd(Intercept) 1.59 0.45 0.80 2.59 1.00 9772 14781
sd(speakerp1p2) 0.94 0.65 0.05 2.44 1.00 4707 10475
cor(Intercept,speakerp1p2) 0.14 0.52 -0.89 0.95 1.00 13363 14528
Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
Intercept -0.73 0.93 -2.59 1.18 1.00 11518 11729
age_group4 1.19 0.65 -0.01 2.53 1.00 13916 16754
speakerp1p2 0.06 0.56 -1.07 1.15 1.00 19916 20618
order_comp_prodComprehension2nd 0.07 0.57 -1.03 1.20 1.00 13526 18799
age_group4:speakerp1p2 -1.11 0.75 -2.61 0.38 1.00 19241 20712
OS: Mac (Catalina, 10.15.7)
brms: 2.15.0
I apologize if I have excluded pertinent information or have formatted the code or output unconventionally for this post, this is my first time posting on this forum. Thank you.