# Puzzling error message

Data is attached.

button_press.csv (2.7 KB)

The following rstan code is giving errors when the prior on mu is Uniform(100,2000), but the rstan code runs (ignoring divergent transitions) if the prior on mu is Uniform(0,2000). The error messages are shown below. (This example is just used as a pedagogical example in a course we are teaching, to show how bad Uniform priors are).

Why does the lower bound on the Uniform prior have to be 0?

Working code:

``````library(readr)
library(rstan)
m1<-"data { int N;
real y[N]; // data
}
parameters {
real<lower=0> mu;
real<lower=0> sigma;
}
model {
// priors
mu ~ uniform(0,2000);  // <=== here
sigma ~ uniform(0,100);
y ~ normal(mu,sigma);
}
"

## fit model:
m1rstan<-stan(model_code=m1, data=dat,
chains = 4,
iter = 2000)
``````

Non-working code:

``````library(rstan)
m1<-"data { int N;
real y[N]; // data
}
parameters {
real<lower=0> mu;
real<lower=0> sigma;
}
model {
// priors
mu ~ uniform(100,2000);  // <=== here
sigma ~ uniform(0,100);
y ~ normal(mu,sigma);
}
"

## fit model:
m1rstan<-stan(model_code=m1, data=dat,
chains = 4,
iter = 50)
``````

Error messages for the model immediately above (I reduced the number of iterations to make the error messages easier to see):

``````SAMPLING FOR MODEL 'e651a4ac34c129c881876f97c34ed6f8' NOW (CHAIN 1).
Chain 1: Rejecting initial value:
Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
Chain 1:   Stan can't start sampling from this initial value.
Chain 1: Rejecting initial value:
Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
Chain 1:   Stan can't start sampling from this initial value.
Chain 1: Rejecting initial value:
Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
Chain 1:   Stan can't start sampling from this initial value.
Chain 1: Rejecting initial value:
Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
Chain 1:   Stan can't start sampling from this initial value.
Chain 1: Rejecting initial value:
Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
Chain 1:   Stan can't start sampling from this initial value.
Chain 1: Rejecting initial value:
Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
Chain 1:   Stan can't start sampling from this initial value.
Chain 1: Rejecting initial value:
Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
Chain 1:   Stan can't start sampling from this initial value.
Chain 1: Rejecting initial value:
Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
Chain 1:   Stan can't start sampling from this initial value.
Chain 1: Rejecting initial value:
Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
Chain 1:   Stan can't start sampling from this initial value.
Chain 1: Rejecting initial value:
Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
Chain 1:   Stan can't start sampling from this initial value.
Chain 1: Rejecting initial value:
Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
Chain 1:   Stan can't start sampling from this initial value.
Chain 1: Rejecting initial value:
Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
Chain 1:   Stan can't start sampling from this initial value.
Chain 1: Rejecting initial value:
Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
Chain 1:   Stan can't start sampling from this initial value.
Chain 1: Rejecting initial value:
Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
Chain 1:   Stan can't start sampling from this initial value.
Chain 1: Rejecting initial value:
Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
Chain 1:   Stan can't start sampling from this initial value.
Chain 1: Rejecting initial value:
Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
Chain 1:   Stan can't start sampling from this initial value.
Chain 1: Rejecting initial value:
Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
Chain 1:   Stan can't start sampling from this initial value.
Chain 1: Rejecting initial value:
Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
Chain 1:   Stan can't start sampling from this initial value.
Chain 1: Rejecting initial value:
Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
Chain 1:   Stan can't start sampling from this initial value.
Chain 1: Rejecting initial value:
Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
Chain 1:   Stan can't start sampling from this initial value.
Chain 1: Rejecting initial value:
Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
Chain 1:   Stan can't start sampling from this initial value.
Chain 1: Rejecting initial value:
Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
Chain 1:   Stan can't start sampling from this initial value.
Chain 1: Rejecting initial value:
Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
Chain 1:   Stan can't start sampling from this initial value.
Chain 1: Rejecting initial value:
Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
Chain 1:   Stan can't start sampling from this initial value.
Chain 1: Rejecting initial value:
Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
Chain 1:   Stan can't start sampling from this initial value.
Chain 1: Rejecting initial value:
Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
Chain 1:   Stan can't start sampling from this initial value.
Chain 1: Rejecting initial value:
Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
Chain 1:   Stan can't start sampling from this initial value.
Chain 1: Rejecting initial value:
Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
Chain 1:   Stan can't start sampling from this initial value.
Chain 1: Rejecting initial value:
Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
Chain 1:   Stan can't start sampling from this initial value.
Chain 1: Rejecting initial value:
Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
Chain 1:   Stan can't start sampling from this initial value.
Chain 1: Rejecting initial value:
Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
Chain 1:   Stan can't start sampling from this initial value.
Chain 1: Rejecting initial value:
Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
Chain 1:   Stan can't start sampling from this initial value.
Chain 1: Rejecting initial value:
Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
Chain 1:   Stan can't start sampling from this initial value.
Chain 1: Rejecting initial value:
Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
Chain 1:   Stan can't start sampling from this initial value.
Chain 1: Rejecting initial value:
Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
Chain 1:   Stan can't start sampling from this initial value.
Chain 1: Rejecting initial value:
Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
Chain 1:   Stan can't start sampling from this initial value.
Chain 1: Rejecting initial value:
Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
Chain 1:   Stan can't start sampling from this initial value.
Chain 1: Rejecting initial value:
Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
Chain 1:   Stan can't start sampling from this initial value.
Chain 1: Rejecting initial value:
Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
Chain 1:   Stan can't start sampling from this initial value.
Chain 1: Rejecting initial value:
Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
Chain 1:   Stan can't start sampling from this initial value.
Chain 1: Rejecting initial value:
Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
Chain 1:   Stan can't start sampling from this initial value.
Chain 1: Rejecting initial value:
Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
Chain 1:   Stan can't start sampling from this initial value.
Chain 1: Rejecting initial value:
Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
Chain 1:   Stan can't start sampling from this initial value.
Chain 1: Rejecting initial value:
Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
Chain 1:   Stan can't start sampling from this initial value.
Chain 1: Rejecting initial value:
Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
Chain 1:   Stan can't start sampling from this initial value.
Chain 1: Rejecting initial value:
Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
Chain 1:   Stan can't start sampling from this initial value.
Chain 1: Rejecting initial value:
Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
Chain 1:   Stan can't start sampling from this initial value.
Chain 1: Rejecting initial value:
Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
Chain 1:   Stan can't start sampling from this initial value.
Chain 1: Rejecting initial value:
Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
Chain 1:   Stan can't start sampling from this initial value.
Chain 1: Rejecting initial value:
Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
Chain 1:   Stan can't start sampling from this initial value.
Chain 1: Rejecting initial value:
Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
Chain 1:   Stan can't start sampling from this initial value.
Chain 1: Rejecting initial value:
Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
Chain 1:   Stan can't start sampling from this initial value.
Chain 1: Rejecting initial value:
Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
Chain 1:   Stan can't start sampling from this initial value.
Chain 1: Rejecting initial value:
Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
Chain 1:   Stan can't start sampling from this initial value.
Chain 1: Rejecting initial value:
Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
Chain 1:   Stan can't start sampling from this initial value.
Chain 1: Rejecting initial value:
Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
Chain 1:   Stan can't start sampling from this initial value.
Chain 1: Rejecting initial value:
Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
Chain 1:   Stan can't start sampling from this initial value.
Chain 1: Rejecting initial value:
Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
Chain 1:   Stan can't start sampling from this initial value.
Chain 1: Rejecting initial value:
Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
Chain 1:   Stan can't start sampling from this initial value.
Chain 1: Rejecting initial value:
Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
Chain 1:   Stan can't start sampling from this initial value.
Chain 1: Rejecting initial value:
Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
Chain 1:   Stan can't start sampling from this initial value.
Chain 1: Rejecting initial value:
Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
Chain 1:   Stan can't start sampling from this initial value.
Chain 1: Rejecting initial value:
Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
Chain 1:   Stan can't start sampling from this initial value.
Chain 1: Rejecting initial value:
Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
Chain 1:   Stan can't start sampling from this initial value.
Chain 1: Rejecting initial value:
Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
Chain 1:   Stan can't start sampling from this initial value.
Chain 1: Rejecting initial value:
Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
Chain 1:   Stan can't start sampling from this initial value.
Chain 1: Rejecting initial value:
Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
Chain 1:   Stan can't start sampling from this initial value.
Chain 1: Rejecting initial value:
Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
Chain 1:   Stan can't start sampling from this initial value.
Chain 1: Rejecting initial value:
Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
Chain 1:   Stan can't start sampling from this initial value.
Chain 1: Rejecting initial value:
Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
Chain 1:   Stan can't start sampling from this initial value.
Chain 1: Rejecting initial value:
Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
Chain 1:   Stan can't start sampling from this initial value.
Chain 1: Rejecting initial value:
Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
Chain 1:   Stan can't start sampling from this initial value.
Chain 1: Rejecting initial value:
Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
Chain 1:   Stan can't start sampling from this initial value.
Chain 1: Rejecting initial value:
Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
Chain 1:   Stan can't start sampling from this initial value.
Chain 1: Rejecting initial value:
Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
Chain 1:   Stan can't start sampling from this initial value.
Chain 1: Rejecting initial value:
Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
Chain 1:   Stan can't start sampling from this initial value.
Chain 1: Rejecting initial value:
Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
Chain 1:   Stan can't start sampling from this initial value.
Chain 1: Rejecting initial value:
Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
Chain 1:   Stan can't start sampling from this initial value.
Chain 1: Rejecting initial value:
Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
Chain 1:   Stan can't start sampling from this initial value.
Chain 1: Rejecting initial value:
Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
Chain 1:   Stan can't start sampling from this initial value.
Chain 1: Rejecting initial value:
Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
Chain 1:   Stan can't start sampling from this initial value.
Chain 1: Rejecting initial value:
Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
Chain 1:   Stan can't start sampling from this initial value.
Chain 1: Rejecting initial value:
Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
Chain 1:   Stan can't start sampling from this initial value.
Chain 1: Rejecting initial value:
Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
Chain 1:   Stan can't start sampling from this initial value.
Chain 1: Rejecting initial value:
Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
Chain 1:   Stan can't start sampling from this initial value.
Chain 1: Rejecting initial value:
Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
Chain 1:   Stan can't start sampling from this initial value.
Chain 1: Rejecting initial value:
Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
Chain 1:   Stan can't start sampling from this initial value.
Chain 1: Rejecting initial value:
Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
Chain 1:   Stan can't start sampling from this initial value.
Chain 1: Rejecting initial value:
Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
Chain 1:   Stan can't start sampling from this initial value.
Chain 1: Rejecting initial value:
Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
Chain 1:   Stan can't start sampling from this initial value.
Chain 1: Rejecting initial value:
Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
Chain 1:   Stan can't start sampling from this initial value.
Chain 1: Rejecting initial value:
Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
Chain 1:   Stan can't start sampling from this initial value.
Chain 1: Rejecting initial value:
Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
Chain 1:   Stan can't start sampling from this initial value.
Chain 1: Rejecting initial value:
Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
Chain 1:   Stan can't start sampling from this initial value.
Chain 1: Rejecting initial value:
Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
Chain 1:   Stan can't start sampling from this initial value.
Chain 1: Rejecting initial value:
Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
Chain 1:   Stan can't start sampling from this initial value.
Chain 1: Rejecting initial value:
Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
Chain 1:   Stan can't start sampling from this initial value.
Chain 1: Rejecting initial value:
Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
Chain 1:   Stan can't start sampling from this initial value.
Chain 1: Rejecting initial value:
Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
Chain 1:   Stan can't start sampling from this initial value.
Chain 1: Rejecting initial value:
Chain 1:   Log probability evaluates to log(0), i.e. negative infinity.
Chain 1:   Stan can't start sampling from this initial value.
Chain 1:
Chain 1: Initialization between (-2, 2) failed after 100 attempts.
Chain 1:  Try specifying initial values, reducing ranges of constrained values, or reparameterizing the model.
[1] "Error in sampler\$call_sampler(args_list[[i]]) : Initialization failed."
error occurred during calling the sampler; sampling not done
``````

mu is defined outside the prior. This is not good. You don’t need uniform statement. Just do

``````real<lower=100, 2000> mu
``````

Same thing for sigma.

Beside, for such hard boundaries there should be a really structural reason, otherwise omit. It’s best to leave the model converge to the optimal value.

I recommend reading the stan manual a little, all those basic modelling concepts are explained there.

Yes, yes, sorry, that was a mistake on my part. The real problem here does not have to do with Stan but with brms. I was just trying to quickly code it up in Stan and made a mistake.

The problem is that when we run the model:

``````fit <- brm(rt ~ 1,
family = gaussian(),
prior = c(
prior(uniform(100, 1000), class = Intercept),
prior(uniform(0, 100), class = sigma)
),
chains = 1,
iter = 50,
warmup = 25
)
``````

we get the messages I showed via rstan. This probably has something to do with the centering done on the intercept. When I extract the Stan code from the brms model, and specify a lower bound on mu, then the model works (in rstan). Apologies if I am missing something obvious; I think specifying the lower bound using lb doesn’t work for the intercept, in brms.

Someone in my lab showed me how to get this to work:

``````fit <- brm(rt ~ 0 + Intercept,