Thanks for the suggestions in your reply to my another post. I am working on the plotting as you suggest.
Meanwhile, I have a look at the effect of changing the max_depth
and realize that setting it to the 9
or 10
that I had been using leads to 600
or 121
transitions hitting the limit, resp. (when running 3 x 200 = 600 transitions). Increasing to max_depth=11
or above avoids hitting the limit completely.
-
The
max_depth=9
case also has the issue ofsplit R-hat greater than 1.1: gw_sd[3], gw_sd[5]
. But all the parameters of interest (reported below) haveR-hat ~ 1.0
and the run time is significantly shorter than in themax_depth=10
case (where noR-hat > 1.1
at all).- Should
R-hat > 1.1
be avoided at all cost even when (i) the problem does not affect the goodRhat
of the parameters of interest; (ii) their mean estimates remain very similar; (iii) ignoring the issue gives a much shorter run time ?
- Should
-
I have looked at
max_depth=11
to13
as well. The warmup time increases quite substantially even though the final sampling time is very similar and so are the mean estimates,N_Eff
, andRhat
of the parameters of interest.- Is it still worth trying much bigger
max_depth
, like 20, 30, …?
- Is it still worth trying much bigger
-
Had a look at the CmdStan manual concerning
init_buffer
,term_buffer
, andwindow
, and the adaptation process. I guess I have a basic understanding. Tried to look around (like the Stan user guide, forum, …) and found only very limited related info (such as this post). Another discussion by @aaronjg sounds very relevant but most of the responses in that post are at a level too technical for me to comprehend.- My take from that post is that I can reduce the overall warmup time by forcing more iterations into the fast
init_buffer
andterm_buffer
intervals (eg, 200, instead of the default 75). Am I getting this right? Is it useful to adjust thestepsize
at the same time and if so, how?
- My take from that post is that I can reduce the overall warmup time by forcing more iterations into the fast
Would appreciate very much your feedback. Many thanks.
====================================================
max_depth=9
:
600 of 600 (1e+02%) transitions hit the maximum treedepth limit of 9, or 2^9 leapfrog steps.
Trajectories that are prematurely terminated due to this limit will result in slow exploration
and you should increase the limit to ensure optimal performance.
The following parameters had split R-hat greater than 1.1:
gw_sd[3], gw_sd[5]
Such high values indicate incomplete mixing and biasedestimation.
You should consider regularization your model with additional prior information
or looking for a more effective parameterization.
3 chains: each with iter=(200,200,200); warmup=(0,0,0); thin=(1,1,1); 600 iterations saved.
Warmup took (11398, 11641, 10726) seconds, 9.4 hours total
Sampling took (2992, 2994, 3009) seconds, 2.5 hours total
Mean MCSE StdDev 5% 50% 95% N_Eff N_Eff/s R_hat
lp__ 1.9e+04 1.2e+00 1.3e+01 1.9e+04 1.9e+04 1.9e+04 1.2e+02 1.3e-02 1.0e+00
accept_stat__ 9.9e-01 1.6e-03 2.4e-02 9.5e-01 1.0e+00 1.0e+00 2.3e+02 2.5e-02 1.0e+00
stepsize__ 1.4e-02 1.7e-03 2.1e-03 1.1e-02 1.4e-02 1.6e-02 1.5e+00 1.7e-04 8.0e+14
treedepth__ 9.0e+00 -nan 1.4e-14 9.0e+00 9.0e+00 9.0e+00 -nan -nan 9.9e-01
n_leapfrog__ 5.1e+02 -nan 2.1e-12 5.1e+02 5.1e+02 5.1e+02 -nan -nan -nan
divergent__ 0.0e+00 -nan 0.0e+00 0.0e+00 0.0e+00 0.0e+00 -nan -nan -nan
energy__ -1.8e+04 1.5e+00 1.9e+01 -1.8e+04 -1.8e+04 -1.8e+04 1.5e+02 1.7e-02 1.0e+00
sd_y 8.1e-02 2.0e-05 5.9e-04 8.0e-02 8.1e-02 8.2e-02 8.9e+02 9.9e-02 1.0e+00
mu_u1 8.1e-02 3.2e-04 9.2e-03 6.5e-02 8.1e-02 9.5e-02 8.4e+02 9.4e-02 1.0e+00
mu_alpha 4.3e-02 7.6e-05 1.9e-03 4.0e-02 4.3e-02 4.6e-02 6.5e+02 7.2e-02 1.0e+00
beta 5.8e-01 2.8e-04 8.1e-03 5.7e-01 5.8e-01 6.0e-01 8.0e+02 8.9e-02 1.0e+00
theta 1.6e-01 1.1e-04 3.4e-03 1.5e-01 1.6e-01 1.6e-01 9.6e+02 1.1e-01 1.0e+00
sd_season 9.9e-02 1.7e-04 4.4e-03 9.1e-02 9.8e-02 1.1e-01 6.8e+02 7.5e-02 1.0e+00
mu_season[1] -1.2e-01 3.6e-04 1.1e-02 -1.4e-01 -1.2e-01 -1.0e-01 8.5e+02 9.4e-02 1.0e+00
mu_season[2] -6.9e-02 4.1e-04 1.0e-02 -8.6e-02 -7.0e-02 -5.2e-02 6.1e+02 6.8e-02 1.0e+00
mu_season[3] 1.4e-01 4.0e-04 1.0e-02 1.2e-01 1.4e-01 1.6e-01 6.3e+02 7.0e-02 1.0e+00
p[1] 7.0e-01 2.4e-03 5.2e-02 6.3e-01 6.9e-01 7.9e-01 4.8e+02 5.3e-02 1.0e+00
p[2] 6.2e-01 2.5e-04 6.0e-03 6.1e-01 6.2e-01 6.3e-01 5.8e+02 6.5e-02 1.0e+00
p[3] 6.8e-01 3.4e-03 7.4e-02 5.8e-01 6.6e-01 8.2e-01 4.7e+02 5.3e-02 1.0e+00
g[1] 8.5e-01 1.8e-03 4.8e-02 7.8e-01 8.6e-01 9.3e-01 6.8e+02 7.6e-02 1.0e+00
g[2] 3.3e-01 8.1e-04 2.0e-02 2.9e-01 3.3e-01 3.6e-01 6.4e+02 7.1e-02 1.0e+00
w[1] 6.4e-01 3.6e-03 6.9e-02 5.3e-01 6.3e-01 7.5e-01 3.7e+02 4.1e-02 1.0e+00
w[2] 1.5e-01 6.0e-04 1.3e-02 1.3e-01 1.5e-01 1.8e-01 4.7e+02 5.2e-02 1.0e+00
w[3] 5.8e-01 8.5e-04 2.0e-02 5.5e-01 5.8e-01 6.2e-01 5.8e+02 6.4e-02 1.0e+00
d[1] 4.3e-02 5.5e-04 1.1e-02 2.6e-02 4.3e-02 6.0e-02 3.8e+02 4.2e-02 1.0e+00
d[2] 7.1e-01 3.7e-04 9.5e-03 6.9e-01 7.1e-01 7.2e-01 6.8e+02 7.5e-02 1.0e+00
d[3] 2.5e-01 4.6e-04 1.1e-02 2.3e-01 2.5e-01 2.7e-01 5.9e+02 6.6e-02 1.0e+00
max_depth=10
:
121 of 600 (20%) transitions hit the maximum treedepth limit of 10, or 2^10 leapfrog steps.
Trajectories that are prematurely terminated due to this limit will result in slow exploration
and you should increase the limit to ensure optimal performance.
3 chains: each with iter=(200,200,200); warmup=(0,0,0); thin=(1,1,1); 600 iterations saved.
Warmup took (21050, 20714, 20333) seconds, 17 hours total
Sampling took (3058, 5142, 4021) seconds, 3.4 hours total
Mean MCSE StdDev 5% 50% 95% N_Eff N_Eff/s R_hat
lp__ 1.9e+04 9.5e-01 1.4e+01 1.9e+04 1.9e+04 1.9e+04 2.1e+02 1.7e-02 1.0e+00
accept_stat__ 9.8e-01 1.5e-03 3.7e-02 9.4e-01 1.0e+00 1.0e+00 5.9e+02 4.9e-02 1.0e+00
stepsize__ 1.4e-02 1.4e-03 1.7e-03 1.1e-02 1.4e-02 1.5e-02 1.5e+00 1.2e-04 2.6e+14
treedepth__ 9.2e+00 -nan 4.0e-01 9.0e+00 9.0e+00 1.0e+01 -nan -nan 1.2e+00
n_leapfrog__ 6.9e+02 1.2e+02 2.4e+02 5.1e+02 5.1e+02 1.0e+03 3.9e+00 3.2e-04 1.3e+00
divergent__ 0.0e+00 -nan 0.0e+00 0.0e+00 0.0e+00 0.0e+00 -nan -nan -nan
energy__ -1.8e+04 1.3e+00 1.9e+01 -1.8e+04 -1.8e+04 -1.8e+04 2.0e+02 1.6e-02 1.0e+00
sd_y 8.1e-02 2.2e-05 6.2e-04 8.0e-02 8.1e-02 8.2e-02 8.1e+02 6.6e-02 1.0e+00
mu_u1 8.0e-02 3.6e-04 9.8e-03 6.4e-02 8.1e-02 9.6e-02 7.6e+02 6.2e-02 1.0e+00
mu_alpha 4.3e-02 7.5e-05 1.9e-03 4.0e-02 4.3e-02 4.6e-02 6.3e+02 5.1e-02 1.0e+00
beta 5.9e-01 2.9e-04 7.8e-03 5.7e-01 5.8e-01 6.0e-01 7.0e+02 5.7e-02 1.0e+00
theta 1.6e-01 1.3e-04 3.3e-03 1.5e-01 1.6e-01 1.6e-01 6.7e+02 5.5e-02 1.0e+00
sd_season 9.9e-02 1.5e-04 4.5e-03 9.1e-02 9.9e-02 1.1e-01 8.5e+02 7.0e-02 1.0e+00
mu_season[1] -1.2e-01 3.2e-04 1.0e-02 -1.4e-01 -1.2e-01 -1.0e-01 1.0e+03 8.3e-02 1.0e+00
mu_season[2] -6.9e-02 3.9e-04 1.1e-02 -8.7e-02 -6.9e-02 -5.1e-02 7.4e+02 6.0e-02 1.0e+00
mu_season[3] 1.4e-01 3.8e-04 1.0e-02 1.3e-01 1.4e-01 1.6e-01 7.2e+02 5.9e-02 1.0e+00
p[1] 7.1e-01 2.5e-03 6.0e-02 6.3e-01 7.0e-01 8.2e-01 5.8e+02 4.8e-02 1.0e+00
p[2] 6.2e-01 2.2e-04 5.7e-03 6.1e-01 6.2e-01 6.3e-01 6.6e+02 5.4e-02 1.0e+00
p[3] 6.9e-01 3.5e-03 8.6e-02 5.9e-01 6.8e-01 8.5e-01 5.9e+02 4.9e-02 1.0e+00
g[1] 8.5e-01 1.6e-03 4.9e-02 7.7e-01 8.5e-01 9.3e-01 9.4e+02 7.7e-02 1.0e+00
g[2] 3.3e-01 8.1e-04 2.0e-02 3.0e-01 3.3e-01 3.6e-01 6.4e+02 5.3e-02 1.0e+00
w[1] 6.4e-01 2.8e-03 6.4e-02 5.3e-01 6.4e-01 7.4e-01 5.3e+02 4.4e-02 1.0e+00
w[2] 1.5e-01 4.7e-04 1.3e-02 1.3e-01 1.5e-01 1.7e-01 7.0e+02 5.7e-02 1.0e+00
w[3] 5.8e-01 7.5e-04 2.1e-02 5.5e-01 5.8e-01 6.2e-01 8.2e+02 6.7e-02 1.0e+00
d[1] 4.4e-02 4.1e-04 1.1e-02 2.6e-02 4.4e-02 6.2e-02 6.9e+02 5.7e-02 1.0e+00
d[2] 7.1e-01 3.6e-04 9.9e-03 6.9e-01 7.1e-01 7.2e-01 7.4e+02 6.1e-02 1.0e+00
d[3] 2.5e-01 5.1e-04 1.1e-02 2.3e-01 2.5e-01 2.7e-01 4.8e+02 4.0e-02 1.0e+00
max_depth=11
:
3 chains: each with iter=(200,200,200); warmup=(0,0,0); thin=(1,1,1); 600 iterations saved.
Warmup took (28354, 29356, 33217) seconds, 25 hours total
Sampling took (3291, 5990, 5615) seconds, 4.1 hours total
Mean MCSE StdDev 5% 50% 95% N_Eff N_Eff/s R_hat
lp__ 1.9e+04 9.4e-01 1.4e+01 1.9e+04 1.9e+04 1.9e+04 2.1e+02 1.4e-02 1.0e+00
accept_stat__ 9.9e-01 7.4e-04 1.8e-02 9.6e-01 1.0e+00 1.0e+00 6.1e+02 4.1e-02 1.0e+00
stepsize__ 1.1e-02 1.5e-03 1.9e-03 9.0e-03 1.0e-02 1.3e-02 1.5e+00 1.0e-04 3.5e+14
treedepth__ 9.6e+00 3.5e-01 4.9e-01 9.0e+00 1.0e+01 1.0e+01 2.0e+00 1.4e-04 1.9e+00
n_leapfrog__ 8.4e+02 1.7e+02 2.4e+02 5.1e+02 1.0e+03 1.0e+03 2.0e+00 1.3e-04 2.0e+00
divergent__ 0.0e+00 -nan 0.0e+00 0.0e+00 0.0e+00 0.0e+00 -nan -nan -nan
energy__ -1.8e+04 1.4e+00 1.9e+01 -1.8e+04 -1.8e+04 -1.8e+04 1.9e+02 1.3e-02 1.0e+00
sd_y 8.1e-02 2.3e-05 6.2e-04 8.0e-02 8.1e-02 8.2e-02 7.1e+02 4.8e-02 1.0e+00
mu_u1 8.1e-02 3.8e-04 9.5e-03 6.5e-02 8.1e-02 9.6e-02 6.1e+02 4.1e-02 1.0e+00
mu_alpha 4.3e-02 8.0e-05 2.0e-03 4.0e-02 4.3e-02 4.6e-02 6.3e+02 4.2e-02 1.0e+00
beta 5.8e-01 3.1e-04 7.6e-03 5.7e-01 5.8e-01 6.0e-01 6.2e+02 4.2e-02 1.0e+00
theta 1.6e-01 1.3e-04 3.3e-03 1.5e-01 1.6e-01 1.6e-01 6.6e+02 4.4e-02 1.0e+00
sd_season 9.9e-02 1.6e-04 4.5e-03 9.2e-02 9.8e-02 1.1e-01 7.5e+02 5.0e-02 1.0e+00
mu_season[1] -1.2e-01 3.6e-04 1.1e-02 -1.4e-01 -1.2e-01 -1.0e-01 8.5e+02 5.7e-02 1.0e+00
mu_season[2] -6.9e-02 4.0e-04 1.0e-02 -8.6e-02 -6.9e-02 -5.2e-02 6.9e+02 4.6e-02 1.0e+00
mu_season[3] 1.4e-01 3.8e-04 1.1e-02 1.3e-01 1.4e-01 1.6e-01 8.1e+02 5.4e-02 1.0e+00
p[1] 7.0e-01 2.5e-03 5.6e-02 6.3e-01 7.0e-01 8.1e-01 5.1e+02 3.4e-02 1.0e+00
p[2] 6.2e-01 2.1e-04 5.5e-03 6.1e-01 6.2e-01 6.2e-01 6.8e+02 4.6e-02 1.0e+00
p[3] 6.9e-01 3.6e-03 8.0e-02 5.8e-01 6.8e-01 8.4e-01 5.0e+02 3.4e-02 1.0e+00
g[1] 8.6e-01 1.7e-03 4.6e-02 7.8e-01 8.5e-01 9.3e-01 7.4e+02 5.0e-02 1.0e+00
g[2] 3.3e-01 7.0e-04 2.1e-02 2.9e-01 3.3e-01 3.6e-01 9.4e+02 6.3e-02 1.0e+00
w[1] 6.4e-01 2.5e-03 6.6e-02 5.4e-01 6.4e-01 7.5e-01 7.1e+02 4.8e-02 1.0e+00
w[2] 1.5e-01 4.5e-04 1.2e-02 1.3e-01 1.5e-01 1.7e-01 7.3e+02 4.9e-02 1.0e+00
w[3] 5.8e-01 7.5e-04 2.0e-02 5.5e-01 5.8e-01 6.2e-01 7.1e+02 4.7e-02 1.0e+00
d[1] 4.4e-02 4.4e-04 1.1e-02 2.5e-02 4.4e-02 6.3e-02 6.6e+02 4.4e-02 1.0e+00
d[2] 7.1e-01 3.7e-04 9.9e-03 6.9e-01 7.1e-01 7.3e-01 7.3e+02 4.9e-02 1.0e+00
d[3] 2.5e-01 5.0e-04 1.2e-02 2.3e-01 2.5e-01 2.7e-01 5.8e+02 3.9e-02 1.0e+00