Ordered_logistic in Item response model with no constant category

Good nigth,

I am from Colombia and needing a few help with my code in Stan. I am making a ordered logistic model with not constant number of categories. Some of you could give me some ideas for making a model with a varible number of categories by item. For example: item 1 have 4 categories, item 2 have 5 categories, … .

In my code, i have a funtional code with the same number of categories boundaries.

I will be so gratedfull,

Sebastián

data{
  int<lower=1>  N;                       // number of answers
  int<lower=10> N_fami;                  // number de entrepreneur
  int<lower=2>  N_item;                  // number de items
  int<lower=2,upper=3> N_cat;            // number of categories item
  int<lower=1,upper=N_cat> y[N];         // respuestas; y[n], n-th respuesta
  int<lower=1,upper=N_fami> famiempresas[N];//  respuestas del empresario[n]
  int<lower=1,upper=N_item> item[N];     // número de items [n]
}//end data

parameters{
  vector[N_fami] theta;         // latent traits of microempresarios
  ordered[N_cat-1] beta[N_item];// coefficients of predictors (cut p)
  real mu_beta;                 // mean of the beta-parameters: difficulty of the item
  real<lower=0> sigma_beta;     //sd of the prior distributions of category difficulty
  real pho_theta; // parámetro de asimétria del trazo latente
  vector<lower=0>[N_item] alpha;
}//end parameters


model{
  theta ~ skew_normal(0,1, pho_theta);//  latent traits
  for(j in 1:N_item){
      beta[j]~ normal(mu_beta,sigma_beta);// prior of the item parameters
      alpha[j] ~ normal(0,1); // prior discriminación
  }
  mu_beta ~ normal(0,2);    // hyper prior for mu_beta
  sigma_beta ~ cauchy(0,2); // hyper prior for sigma_beta
pho_theta  ~ normal(0,1); // hyper prior for theta, parámetro de asimétria. 
  //likelihood
  for(n in 1:N){
   y[n] ~ ordered_logistic(alpha[item[n]]*theta[famiempresas[n]],beta[item[n]]);
  }
}//end model


generated quantities {
vector[N] log_lik;
for (n in 1: N){
log_lik[n] = ordered_logistic_log(y[n],alpha[item[n]]*theta[famiempresas[n]],beta[item[n]]);
}
}//generated quantities

The model

P[u_{ij}=g|\theta_j,\xi]=logit^{-1} (\eta_{g-1})- logit^{-1} (\eta_{g}) where, logit^{-1}(\eta_{g-1})= (1+e^{-\eta_{g-1}})^{-1}, \eta_{g_{-1}}=(\alpha_i*\theta_j-\alpha_i*\beta_{i,g-1}) and logit^{-1}{(\eta_g)= (1+e^{-\eta_g})^{-1}} \eta_g=(\alpha_i*\theta_j-\alpha_i*\beta_{i,g}).
P[u_{ij}=g|\theta_j,\xi]= \left\{ \begin{array}{lcc} 1-(1+e^{-\eta_{1}})^{-1} & si & g=1 \\ (1+e^{-\eta_{g-1}})^{-1}-(1+e^{-\eta_g})^{-1}& si & 1 < g < k \\ (1+e^{-\eta_{k-1}})^{-1} & si & g = k-1 \end{array} \right.
\theta_j \sim SN(0, 1, \rho), \nonumber\\ \rho \sim N(0,1),\nonumber \\ \nonumber \alpha_i \sim N(0,1),\\ \nonumber \beta_{ig}\sim N(\mu_{beta_{ig}},\sigma_{beta_{ig}}),\\ \nonumber \mu_{beta}\sim N (0,1),\\ \nonumber \sigma_{beta}\sim Cauchy (0,2)