It’s one of two ways to build the set of trajectories to sample from outlined in: https://arxiv.org/pdf/1701.02434.pdf and https://arxiv.org/pdf/1601.00225.pdf

Takes a little to digest cause there’s lots of parts, but you should go through it cause how you build the tree and what U-turn checks you need are super connected.

Well don’t dig too far back in my post history haha.

Nice plots. I like them. Did you actually get a 2d example to do this? Or is this picking a couple dimensions out of a much higher dimensional problem?

I guess the rhos that Betancourt is talking about are the sums of momentums. But change in position position is the integral of momentum, and just summing the momentums with a fixed stepsize along a leapfrog trajectory is going to give you a good approximation to that change in position up to a scaling factor, and we only care about directions.

So all the red arrows point in the same direction as a vector between the unconnected endpoints. Given that and the fact that I don’t know the Riemannian stuff, I’ve happily stuck with the old U-turn criteria. The differences are in A.4.2 here: https://arxiv.org/pdf/1701.02434.pdf

My buddy @arya wrote a NUTS implementation in R for experimenting with this sorta algorithmic stuff. I’ve been working on it some more. Haven’t gotten it finished yet (it seems to work – just badly organized at this point), but it takes in Stan models/data, and the NUTS implementation as written is about 200~ lines of non-recursive R that makes it easy to get debug info out :D. Gotta review a couple pull reqs first, but I’ll try to get this up within a month (hardly soon, but sigh).

Rewriting one for yourself might be worth it too since you’re getting in deep on this. I think I was down on rewriting it when Arya originally did it cause it looked so complicated, but Betancourt did a good job writing stuff up so it isn’t so bad in the end.

Yes yes