Hello all,
I have a question about the non-centered parameterization of normal distribution. I have two scenarios that I am going to mention and would like your opinion on whether I am on right track or not.
First Scenario
data {
vector[N] Y;
}
parameters {
real alpha;
real<lower=0> sigma_y;
vector[N] Y_raw;
}
transformed parameters {
Y = alpha + Y_raw*sigma_y This is as I understand, the non-centered parameterization
}
model {
alpha ~ normal(0,2);
sigma_y ~ inv_gamma(1,1);
Y_raw ~ std_normal();
}
Second Scenario
data {
vector[N] Y;
}
parameters {
vector[N] alpha;
vector<lower=0>[N] sigma_y;
vector[N] Y_raw;
}
transformed parameters {
Y = alpha + Y_raw .*sigma_y
}
model {
alpha ~ normal(0,2);
sigma_y ~ inv_gamma(1,1);
Y_raw ~ std_normal();
}
Now I would like to know if my non-centered parameterization in the second scenario is correct or not.
Thank you all in advance.
Regards
Ants007