Hi,
I’m dealing with a very simple model that has measurement error in the DV and IV. I’m almost sure that this was working before. But now it’s throwing divergent errors and the estimates don’t make sense.
This is the data:
df_VOTmandarin <- structure(list(subject = c("F01", "F02", "F03", "F04", "F05",
"F06", "F07", "F08", "F09", "F10", "M11", "M12", "M13", "M14",
"M15", "M16", "M17", "M18", "M19", "M20"), meanVOT = c(105.7,
86.7, 97.8, 84.9, 84.6, 98.6, 82, 108, 91, 84.2, 66.9, 72.1,
79.4, 81.4, 79.4, 92, 62.3, 79.1, 83, 91.5), meanvdur = c(160.240500790632,
177.088580577028, 166.431480766486, 191.743223448853, 164.443296364447,
209.664984526471, 164.963891458981, 178.764459628451, 164.695243878764,
165.454699023242, 145.064740184494, 156.549546592339, 157.902925276459,
186.697506183006, 180.052870601759, 137.171787564198, 146.799319226475,
145.136248276608, 144.52767543895, 167.64967057907), sevdur = c(11.6375246514992,
13.6695923443727, 14.7210641393673, 13.3598869761091, 13.033972044188,
13.8418943147466, 13.3182550042139, 16.8821184127746, 17.1090382793098,
13.931131552853, 11.9578088505664, 11.6801297648966, 12.9319905990126,
11.1184014826944, 17.9909366691651, 9.27778876792764, 15.0041274537309,
13.996813051598, 13.2763776071296, 15.3970331017383), seVOT = c(3.79195053882417,
4.15812457725836, 4.62313025268955, 4.67724990423504, 4.49246282368839,
4.09932243723819, 3.89301368550838, 8.34132949701532, 5.16397779494322,
5.98479555020702, 4.69858134617957, 4.16719996587103, 3.82738669184195,
3.81284379142101, 4.70744091837593, 7.21572357194112, 2.08193286261696,
3.49745939536433, 5.81950742474539, 2.54405625374562), c_meanvdur = c(-5.31163172870365,
11.5364480576924, 0.879348247150347, 26.1910909295173, -1.10883615488865,
44.1128520071353, -0.588241060354648, 13.2123271091153, -0.856888640571668,
-0.0974334960936574, -20.4873923348416, -9.00258592699666, -7.64920724287666,
21.1453736636703, 14.5007380824233, -28.3803449551376, -18.7528132928607,
-20.4158842427277, -21.0244570803856, 2.09753805973435)), row.names = c("1",
"2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13",
"14", "15", "16", "17", "18", "19", "20"), class = "data.frame")
And this is the model with its priors.
priors_me <- c(
prior(normal(0, 200), class = Intercept),
prior(normal(0, 10), class = b),
prior(normal(100, 50), class = meanme),
prior(normal(0, 50), class = sdme),
prior(normal(0, 50), class = sigma)
)
fit_mvotme <- brm(meanVOT | resp_se(seVOT, sigma = TRUE) ~
me(meanvdur, sevdur),
data = df_VOTmandarin,
family = gaussian(),
prior = priors_me,
control = list(adapt_delta = .999)
)
Did something change in the last (couple of) brms versions? Am I doing something wrong? Should I just be using mi()
?
Thanks
- Operating System: Ubuntu 20.04.2 LTS
- rstan_2.21.3
- StanHeaders_2.21.0-7
- brms_2.14.4