Hi Paul, Thanks for the quick reply. I’ve rerun the model with my full dataset and a subset and did find that after the sampling there is the warning about observations were being excluded due to NAs. However, this is strange as the subset only has missing values in the values that are to be imputed. Please find this same subset and the brm code I’m using.
I realize the number of iterations is low, but you’ll see that even these 3 smaller chains take about 40 minutes each and the major issue still remains that while this subset of my data has over 3,500 observations, the model output only shows having 37 observations, which is reflected in the fit$data.
Really appreciate your help and insights.
Matt
formula <- bf(ln_value_pc ~ mi(ln_hc_lev_1_total_pc) * hc_lev_1 + mi(ln_hp_lev_1_total_pc) * hp_lev_1 + mi(ln_hc_lev_2_total_pc) * hc_lev_2 + mi(ln_hp_lev_2_total_pc) * hp_lev_2 + mi(ln_hc_lev_3_total_pc) * hc_lev_3 + mi(ln_hp_lev_3_total_pc) * hp_lev_3 + mi(ln_che_pc) * che_lev + s(year, bs = "ps")) +
bf(ln_hc_lev_3_total_pc | mi() ~ mi(ln_hc_lev_2_total_pc):sha_hc_lev3_num + s(year, bs = "ps") + (1 | c_num)) +
bf(ln_hp_lev_3_total_pc | mi() ~ mi(ln_hp_lev_2_total_pc):sha_hp_lev3_num + s(year, bs = "ps") + (1 | c_num)) +
bf(ln_hc_lev_2_total_pc | mi() ~ mi(ln_hc_lev_1_total_pc):sha_hc_lev2_num + s(year, bs = "ps") + (1 | c_num)) +
bf(ln_hp_lev_2_total_pc | mi() ~ mi(ln_hp_lev_1_total_pc):sha_hp_lev2_num + s(year, bs = "ps") + (1 | c_num)) +
bf(ln_hc_lev_1_total_pc | mi() ~ mi(ln_che_pc):sha_hc_lev1_num + s(year, bs = "ps") + (1 | c_num)) +
bf(ln_hp_lev_1_total_pc | mi() ~ mi(ln_che_pc):sha_hp_lev1_num + s(year, bs = "ps") + (1 | c_num)) +
bf(ln_che_pc | mi() ~ s(year, bs = "ps") + (1 | c_num) + ln_the_pc)
fit <- brm(formula, data = data_sub, chains = 4, iter = 300, warmup = 150, seed = 02152019, cores = 34 control = list(max_treedepth = 15,adapt_delta = 0.85))
Just for your quick reference, below is the summary of the fit from the above brm run.
Family: MV(gaussian, gaussian, gaussian, gaussian, gaussian, gaussian, gaussian, gaussian)
Links: mu = identity; sigma = identity
mu = identity; sigma = identity
mu = identity; sigma = identity
mu = identity; sigma = identity
mu = identity; sigma = identity
mu = identity; sigma = identity
mu = identity; sigma = identity
mu = identity; sigma = identity
Formula: ln_value_pc ~ mi(ln_hc_lev_1_total_pc) * hc_lev_1 + mi(ln_hp_lev_1_total_pc) * hp_lev_1 + mi(ln_hc_lev_2_total_pc) * hc_lev_2 + mi(ln_hp_lev_2_total_pc) * hp_lev_2 + mi(ln_hc_lev_3_total_pc) * hc_lev_3 + mi(ln_hp_lev_3_total_pc) * hp_lev_3 + mi(ln_che_pc) * che_lev + s(year, bs = "ps")
ln_hc_lev_3_total_pc | mi() ~ mi(ln_hc_lev_2_total_pc):sha_hc_lev3_num + s(year, bs = "ps") + (1 | c_num)
ln_hp_lev_3_total_pc | mi() ~ mi(ln_hp_lev_2_total_pc):sha_hp_lev3_num + s(year, bs = "ps") + (1 | c_num)
ln_hc_lev_2_total_pc | mi() ~ mi(ln_hc_lev_1_total_pc):sha_hc_lev2_num + s(year, bs = "ps") + (1 | c_num)
ln_hp_lev_2_total_pc | mi() ~ mi(ln_hp_lev_1_total_pc):sha_hp_lev2_num + s(year, bs = "ps") + (1 | c_num)
ln_hc_lev_1_total_pc | mi() ~ mi(ln_che_pc):sha_hc_lev1_num + s(year, bs = "ps") + (1 | c_num)
ln_hp_lev_1_total_pc | mi() ~ mi(ln_che_pc):sha_hp_lev1_num + s(year, bs = "ps") + (1 | c_num)
ln_che_pc | mi() ~ s(year, bs = "ps") + (1 | c_num) + ln_the_pc
Data: data_sub (Number of observations: 37)
Samples: 4 chains, each with iter = 300; warmup = 150; thin = 1;
total post-warmup samples = 600
ICs: LOO = NA; WAIC = NA; R2 = NA
Smooth Terms:
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sds(lnvaluepc_syear_1) 0.13 0.15 0.00 0.52 186 1.01
sds(lnhclev3totalpc_syear_1) 0.26 0.15 0.07 0.64 38 1.09
sds(lnhplev3totalpc_syear_1) 0.03 0.04 0.00 0.13 241 1.01
sds(lnhclev2totalpc_syear_1) 0.07 0.05 0.03 0.17 37 1.08
sds(lnhplev2totalpc_syear_1) 0.05 0.06 0.00 0.22 173 1.01
sds(lnhclev1totalpc_syear_1) 0.01 0.02 0.00 0.07 31 1.12
sds(lnhplev1totalpc_syear_1) 0.21 0.07 0.12 0.37 98 1.04
sds(lnchepc_syear_1) 0.02 0.01 0.00 0.05 101 1.01
Group-Level Effects:
~c_num (Number of levels: 1)
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sd(lnhclev3totalpc_Intercept) 7.31 6.35 0.10 23.73 232 1.00
sd(lnhplev3totalpc_Intercept) 8.40 8.59 0.38 28.43 260 1.00
sd(lnhclev2totalpc_Intercept) 6.40 5.18 0.40 19.47 215 1.02
sd(lnhplev2totalpc_Intercept) 8.13 7.93 0.33 32.45 118 1.02
sd(lnhclev1totalpc_Intercept) 7.53 6.99 0.17 25.99 250 1.00
sd(lnhplev1totalpc_Intercept) 11.08 9.81 0.12 35.91 103 1.05
sd(lnchepc_Intercept) 7.73 7.28 0.14 28.40 158 1.03
Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
lnvaluepc_Intercept 39.00 138.29 -150.69 308.95 3 3.20
lnhclev3totalpc_Intercept 8.04 5.28 -4.12 15.97 100 1.04
lnhplev3totalpc_Intercept -0.28 5.86 -14.11 9.92 47 1.08
lnhclev2totalpc_Intercept 1.08 5.05 -8.76 11.88 105 1.01
lnhplev2totalpc_Intercept 0.02 6.34 -17.13 10.03 91 1.03
lnhclev1totalpc_Intercept 2.22 5.40 -9.99 12.80 78 1.06
lnhplev1totalpc_Intercept -9.42 10.04 -24.78 10.53 57 1.10
lnchepc_Intercept 5.63 5.77 -7.86 15.68 54 1.10
lnvaluepc_hc_lev_1 -80.25 84.59 -233.64 63.33 3 3.58
lnvaluepc_hp_lev_1 18.22 61.40 -76.06 202.09 4 1.71
lnvaluepc_hc_lev_2 -0.50 87.49 -185.15 144.84 3 2.13
lnvaluepc_hp_lev_2 -13.52 90.81 -185.43 142.15 3 2.53
lnvaluepc_hc_lev_3 -10.58 98.83 -196.31 116.83 2 4.33
lnvaluepc_hp_lev_3 -29.89 60.25 -128.99 80.38 8 1.80
lnvaluepc_che_lev 2.30 36.07 -62.08 66.47 3 2.09
lnvaluepc_syear_1 -0.99 10.42 -19.77 18.60 5 1.38
lnhclev3totalpc_syear_1 6.72 0.31 6.12 7.36 52 1.08
lnhplev3totalpc_syear_1 1.15 0.30 0.49 1.74 440 1.01
lnhclev2totalpc_syear_1 0.99 0.26 0.42 1.50 166 1.02
lnhplev2totalpc_syear_1 1.70 0.28 1.20 2.33 317 1.01
lnhclev1totalpc_syear_1 1.28 0.25 0.79 1.75 214 1.01
lnhplev1totalpc_syear_1 -3.90 0.75 -5.24 -2.31 106 1.04
lnchepc_ln_the_pc -0.26 0.16 -0.57 0.05 263 1.01
lnchepc_syear_1 1.45 0.15 1.16 1.74 265 1.00
lnvaluepc_miln_hc_lev_1_total_pc -4.28 11.88 -27.87 19.19 9 1.16
lnvaluepc_miln_hp_lev_1_total_pc -2.10 2.86 -8.05 3.43 124 1.03
lnvaluepc_miln_hc_lev_2_total_pc 2.74 6.23 -11.90 14.00 34 1.21
lnvaluepc_miln_hp_lev_2_total_pc 8.55 16.83 -19.63 44.89 4 2.59
lnvaluepc_miln_hc_lev_3_total_pc 1.37 0.14 1.10 1.64 281 1.01
lnvaluepc_miln_hp_lev_3_total_pc -6.20 16.81 -42.80 21.63 4 2.58
lnvaluepc_miln_che_pc 35.03 57.67 -49.64 128.91 3 3.14
lnvaluepc_miln_hc_lev_1_total_pc:hc_lev_1 30.25 82.05 -148.65 195.88 5 2.25
lnvaluepc_miln_hp_lev_1_total_pc:hp_lev_1 -6.83 23.92 -46.23 42.14 7 1.98
lnvaluepc_miln_hc_lev_2_total_pc:hc_lev_2 55.92 92.04 -74.53 262.06 2 2.92
lnvaluepc_miln_hp_lev_2_total_pc:hp_lev_2 -6.37 58.04 -167.19 90.81 4 2.03
lnvaluepc_miln_hc_lev_3_total_pc:hc_lev_3 -4.58 63.79 -148.86 70.82 3 3.07
lnvaluepc_miln_hp_lev_3_total_pc:hp_lev_3 -12.97 67.57 -148.93 118.21 4 2.90
lnvaluepc_miln_che_pc:che_lev -33.55 56.10 -132.15 52.73 3 3.00
lnhclev3totalpc_miln_hc_lev_2_total_pc:sha_hc_lev3_num -1.09 0.01 -1.11 -1.07 600 1.01
lnhplev3totalpc_miln_hp_lev_2_total_pc:sha_hp_lev3_num 0.02 0.02 -0.01 0.06 404 1.01
lnhclev2totalpc_miln_hc_lev_1_total_pc:sha_hc_lev2_num 0.05 0.07 -0.08 0.19 140 1.03
lnhplev2totalpc_miln_hp_lev_1_total_pc:sha_hp_lev2_num -0.04 0.02 -0.06 -0.00 520 1.01
lnhclev1totalpc_miln_che_pc:sha_hc_lev1_num 0.17 0.20 -0.20 0.55 216 1.00
lnhplev1totalpc_miln_che_pc:sha_hp_lev1_num 1.53 0.22 1.05 1.94 107 1.04
Family Specific Parameters:
Estimate Est.Error l-95% CI u-95% CI Eff.Sample Rhat
sigma_lnvaluepc 1.13 0.15 0.87 1.46 227 1.01
sigma_lnhclev3totalpc 0.08 0.01 0.05 0.11 60 1.06
sigma_lnhplev3totalpc 0.27 0.04 0.21 0.35 600 1.00
sigma_lnhclev2totalpc 0.01 0.00 0.01 0.01 119 1.04
sigma_lnhplev2totalpc 0.26 0.03 0.20 0.33 266 1.00
sigma_lnhclev1totalpc 0.01 0.00 0.01 0.02 105 1.04
sigma_lnhplev1totalpc 0.03 0.00 0.02 0.04 234 1.01
sigma_lnchepc 0.01 0.00 0.01 0.01 135 1.01
Samples were drawn using sampling(NUTS). For each parameter, Eff.Sample
is a crude measure of effective sample size, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).
Warning messages:
1: The model has not converged (some Rhats are > 1.1). Do not analyse the results!
We recommend running more iterations and/or setting stronger priors.
2: There were 197 divergent transitions after warmup. Increasing adapt_delta above 0.85 may help.
See http://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup <a class="attachment" href="//cdck-file-uploads-canada1.s3.dualstack.ca-central-1.amazonaws.com/flex030/uploads/mc_stan/original/2X/6/68bf8cdcc4c70c32b804ca1f0a90be4d6c434cf5.r">data_subset.r</a> (624.4 KB)