Hi,
Thanks for the help. Your way works! I still carious about the meaning of the parameters. My question is how can I get the distribution of correlation?
model='''
data {
 int D; //number of dimensions
 int K; //number of gaussians
 int N; //number of data
 vector[D] y[N]; //data
}
parameters {
 simplex[K] theta; //mixing proportions
 ordered[D] mu[K]; //mixture component means
 cholesky_factor_corr[D] L[K]; //cholesky factor of correlation matrix
 vector<lower=0>[D] sigma[K]; // standard deviations
}
transformed parameters{
	cholesky_factor_cov[D,D] cov[K];  
    for (k in 1:K) cov[k] = diag_pre_multiply(sigma[k],L[k]);
    }	
//	real sx[K];
//    real sy[K];
//    real ro[K];
//    cov=L;  
//    for (i in 1:K){
//   sx[i]=sqrt(cov[i,1,1]);
//    sy[i]=sqrt(cov[i,2,2]);
//    ro[i]=cov[i,1,2]/sqrt(cov[i,1,1])/sqrt(cov[i,2,2]);
//    }
//}
model {
 real ps[K];
 theta ~ dirichlet(rep_vector(2.0, D));
 for(k in 1:K){
 mu[1,k] ~ normal(3.67,1);//uniform(340/100,380/100);//
 mu[2,k]~  normal(31.80,1);//uniform(3160/100,3190/100);//
 sigma[k] ~ normal(1,2);
 L[k] ~ lkj_corr_cholesky(2);
 }
 
 for (n in 1:N){
 for (k in 1:K){
 ps[k] = log(theta[k])+multi_normal_cholesky_lpdf(y[n] | mu[k], L[k]); //increment log probability of the gaussian
 }
 target += log_sum_exp(ps);
 }
}
'''
Result:
             mean se_mean     sd   2.5%    25%    50%    75%  97.5%  n_eff   Rhat
theta[1]     0.85  1.6e-3    0.1   0.62   0.79   0.87   0.92   0.98 3731.0    1.0
theta[2]     0.15  1.6e-3    0.1   0.02   0.08   0.13   0.21   0.38 3731.0    1.0
mu[1,1]      1.14  9.2e-3   0.34   0.55   0.93   1.13   1.34   1.75 1345.0    1.0
mu[2,1]     31.22    0.01   0.85  29.51  30.67  31.23  31.81  32.83 3741.0    1.0
mu[1,2]     29.19  4.1e-3    0.3  28.61  28.99   29.2   29.4  29.78 5352.0    1.0
mu[2,2]     32.38    0.01   0.81  30.78  31.85  32.38  32.92  33.99 5504.0    1.0
L[1,1,1]      1.0     nan    0.0    1.0    1.0    1.0    1.0    1.0    nan    nan
L[2,1,1]      1.0     nan    0.0    1.0    1.0    1.0    1.0    1.0    nan    nan
L[1,2,1]     0.98  3.2e-3   0.06   0.93   0.99   0.99    1.0    1.0  358.0    1.0
L[2,2,1]  -4.0e-3  5.7e-3   0.45  -0.81  -0.35 5.9e-4   0.33   0.82 6045.0    1.0
L[1,1,2]      0.0     nan    0.0    0.0    0.0    0.0    0.0    0.0    nan    nan
L[2,1,2]      0.0     nan    0.0    0.0    0.0    0.0    0.0    0.0    nan    nan
L[1,2,2]     0.13  4.5e-3   0.09   0.06   0.09   0.11   0.15   0.36  433.0   1.01
L[2,2,2]     0.88  3.7e-3   0.14   0.49   0.83   0.94   0.99    1.0 1415.0    1.0
sigma[1,1]   2.01    0.03   1.41    0.1   0.89    1.8   2.88   5.36 2978.0    1.0
sigma[2,1]   2.01    0.02   1.39   0.11   0.89   1.76   2.87   5.24 3984.0    1.0
sigma[1,2]   1.99    0.03   1.45   0.07   0.83   1.75   2.89   5.35 3098.0    1.0
sigma[2,2]   2.03    0.03   1.43   0.08   0.89   1.81   2.91   5.42 3054.0    1.0
cov[1,1,1]   2.01    0.03   1.41    0.1   0.89    1.8   2.88   5.36 2978.0    1.0
cov[2,1,1]   2.01    0.02   1.39   0.11   0.89   1.76   2.87   5.24 3984.0    1.0
cov[1,2,1]   1.96    0.03   1.43   0.06    0.8   1.72   2.84   5.27 2911.0    1.0
cov[2,2,1]  -0.01    0.02   1.11  -2.58   -0.5 2.1e-4   0.47   2.43 4070.0    1.0
cov[1,1,2]    0.0     nan    0.0    0.0    0.0    0.0    0.0    0.0    nan    nan
cov[2,1,2]    0.0     nan    0.0    0.0    0.0    0.0    0.0    0.0    nan    nan
cov[1,2,2]   0.26    0.01    0.3 8.1e-3   0.09    0.2   0.35   0.91  903.0    1.0
cov[2,2,2]   1.79    0.02   1.31   0.08   0.75   1.56   2.57   4.92 2908.0    1.0
lp__       -371.9    0.09   2.82 -378.4 -373.5 -371.5 -369.8 -367.5 1069.0    1.0