For univariate density plots, you can plot the density for an LKJ prior for 2x2 correlation matrices, or marginal plots of LKJ priors for larger correlation matrices. Below are examples.
library(tidyverse)
theme_set(theme_bw() +
theme(plot.title=element_text(size=rel(1), hjust=0.5)))
library(ggdist)
# Plot LKJ Density
lkj_dfunc = function(K, etas=c(0.1, 0.5, 1, 1.5, 2, 5)) {
etas = set_names(etas)
cor = seq(-1,1,length=200)
etas %>%
map_df(
~ dlkjcorr_marginal(cor, K=K, eta=.x)
) %>%
bind_cols(x=cor) %>%
pivot_longer(cols=-x, names_to='eta', values_to='density') %>%
ggplot(aes(x=x, y=density)) +
geom_area(colour=hcl(240,100,30), fill=hcl(240,100,65)) +
facet_wrap(vars(eta)) +
scale_y_continuous(expand=expansion(c(0,0.05))) +
coord_cartesian(ylim=c(0,2)) +
labs(title=paste0(ifelse(K==2, "", "Marginal "),
"LKJ correlation distribution for K=", K,
" and various values of eta"),
x="Correlation")
}
lkj_dfunc(2)

lkj_dfunc(5)

# Plot density of random draws from LKJ distribution
lkj_rfunc = function(K, N=1000, etas=c(0.1, 0.5, 1, 1.5, 2, 5)) {
etas = set_names(etas)
etas %>%
map_df(
~ rlkjcorr_marginal(N, K=K, eta=.x)
) %>%
pivot_longer(cols=everything(), names_to='eta', values_to='corr') %>%
ggplot(aes(x=corr)) +
geom_density(colour=hcl(240,100,30), fill=hcl(240,100,65)) +
facet_wrap(vars(eta)) +
scale_y_continuous(expand=expansion(c(0,0.05))) +
labs(title=paste0(ifelse(K==2, "D", "Marginal d"),
"ensity of random draws from LKJ distribution for K=", K,
" and various values of eta"),
x="Correlation")
}
lkj_rfunc(2)

lkj_rfunc(5)

Created on 2021-08-14 by the reprex package (v2.0.1)