How to control the size of the uncertainty intervals when plotting conditional effects?

When I try to plot my model I cannot control the size of the uncertainty intervals around the conditional effects. I have large uncertainty and would like to be able to see a plot without uncertainty intervals. I see you can control this with the argument prob = 0 but it still prints a figure with default intervals using this code:

plot(conditional_effects(nbglm_awb_default),
     ask = FALSE,
     points = T,
     prob = 0, offset = T)

Rplot01

Here’s my model:

nbglm_awb_default<-
  brm(
    AWB ~  0 + Intercept + # this allows control of prior on the intercept
      ndate * NP + Season + CarcassPres +
      (1 | NP / StandardTransect) +
      offset(log(Tlength)),
    family = negbinomial,
    data = mydata,
    chains = 4,
    #control = list(adapt_delta = 0.999, max_treedepth = 15),
    prior = newprior_awb,
    save_pars = save_pars(all = TRUE)
  )

Here’s my data:

mydata <- structure(list(AWB = c(7, 66, 15, 44, 22, 60, 45, 32, 30, 33, 
14, 0, 45, 39, 39, 24, 37, 66, 37, 60, 18, 3, 25, 13, 34, 38, 
58, 0, 12, 6, 33, 2, 34, 18, 75, 20, 4, 9, 15, 4, 0, 21, 50, 
24, 21, 9, 5, 87, 13, 43, 1, 19, 13, 1, 28, 56, 18, 42, 13, 2, 
53, 16, 37, 51, 79, 5, 49, 11, 34, 91, 30, 2, 0, 15, 3, 57, 5, 
18, 31, 14, 56, 72, 35, 94, 10, 45, 8, 29, 33, 34, 8, 53, 54, 
24, 5, 21, 11, 27, 83, 23, 24, 4, 10, 13, 17, 11, 51, 6), ndate = c(0, 
0, 0, 0, 0, 14, 14, 14, 14, 14, 14, 19, 19, 19, 19, 20, 20, 25, 
25, 25, 25, 25, 25, 32, 32, 33, 33, 33, 33, 33, 38, 38, 38, 38, 
38, 38, 39, 39, 39, 39, 39, 41, 41, 42, 42, 42, 42, 43, 43, 43, 
44, 46, 46, 46, 46, 51, 51, 51, 51, 51, 51, 54, 54, 54, 55, 56, 
56, 56, 58, 58, 61, 61, 61, 61, 61, 63, 63, 66, 66, 67, 67, 67, 
68, 68, 68, 68, 68, 71, 72, 73, 78, 78, 79, 79, 89, 89, 89, 90, 
90, 91, 91, 91, 96, 96, 96, 96, 97, 97), nyear = c(2013, 2013, 
2013, 2013, 2013, 2014, 2014, 2014, 2014, 2014, 2014, 2015, 2015, 
2015, 2015, 2015, 2015, 2015, 2015, 2015, 2015, 2015, 2015, 2016, 
2016, 2016, 2016, 2016, 2016, 2016, 2016, 2016, 2016, 2016, 2016, 
2016, 2016, 2016, 2016, 2016, 2016, 2017, 2017, 2017, 2017, 2017, 
2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 
2017, 2017, 2017, 2017, 2018, 2018, 2018, 2018, 2018, 2018, 2018, 
2018, 2018, 2018, 2018, 2018, 2018, 2018, 2018, 2018, 2019, 2019, 
2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 
2020, 2020, 2020, 2020, 2021, 2021, 2021, 2021, 2021, 2021, 2021, 
2021, 2021, 2021, 2021, 2021, 2021, 2021), NP = structure(c(1L, 
1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 
1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
2L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 
2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 3L, 3L, 
2L, 2L, 2L, 3L, 3L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 3L, 3L, 
3L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 1L, 1L, 3L, 3L, 2L, 2L, 2L, 
1L, 1L, 3L, 3L, 3L, 2L, 2L, 2L, 3L, 3L, 1L), .Label = c("Katavi", 
"Ruaha", "Selous"), class = "factor"), Season = c("Dry", "Dry", 
"Dry", "Dry", "Dry", "Dry", "Dry", "Dry", "Dry", "Dry", "Dry", 
"Wet", "Wet", "Wet", "Wet", "Wet", "Wet", "Dry", "Dry", "Dry", 
"Dry", "Dry", "Dry", "Wet", "Wet", "Wet", "Wet", "Wet", "Wet", 
"Wet", "Wet", "Dry", "Dry", "Dry", "Dry", "Dry", "Dry", "Dry", 
"Dry", "Dry", "Dry", "Wet", "Wet", "Wet", "Wet", "Wet", "Wet", 
"Wet", "Wet", "Wet", "Wet", "Dry", "Dry", "Dry", "Dry", "Dry", 
"Dry", "Dry", "Dry", "Dry", "Dry", "Wet", "Wet", "Wet", "Wet", 
"Wet", "Wet", "Wet", "Dry", "Dry", "Dry", "Wet", "Dry", "Dry", 
"Dry", "Dry", "Dry", "Wet", "Wet", "Wet", "Wet", "Wet", "Wet", 
"Wet", "Wet", "Wet", "Wet", "Dry", "Dry", "Dry", "Wet", "Wet", 
"Wet", "Wet", "Wet", "Wet", "Wet", "Wet", "Wet", "Wet", "Wet", 
"Wet", "Dry", "Dry", "Dry", "Dry", "Dry", "Dry"), CarcassPres = structure(c(1L, 
1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L), .Label = c("0", 
"1"), class = "factor"), StandardTransect = structure(c(4L, 3L, 
1L, 5L, 7L, 5L, 1L, 8L, 6L, 4L, 3L, 8L, 5L, 6L, 1L, 4L, 3L, 4L, 
3L, 5L, 1L, 8L, 6L, 8L, 6L, 5L, 1L, 8L, 6L, 1L, 5L, 5L, 1L, 6L, 
4L, 3L, 8L, 6L, 5L, 1L, 8L, 4L, 3L, 5L, 1L, 8L, 6L, 5L, 1L, 6L, 
8L, 5L, 1L, 8L, 6L, 4L, 3L, 5L, 1L, 8L, 6L, 3L, 4L, 10L, 2L, 
1L, 5L, 6L, 2L, 10L, 5L, 8L, 8L, 1L, 6L, 3L, 4L, 4L, 3L, 9L, 
2L, 10L, 5L, 1L, 7L, 5L, 7L, 2L, 10L, 9L, 4L, 3L, 10L, 2L, 5L, 
1L, 7L, 4L, 3L, 2L, 10L, 9L, 5L, 7L, 1L, 2L, 9L, 4L), .Label = c("Jongomero", 
"Kidai", "LakeChada", "LakeKatavi", "Lunda", "Magangwe", "Mbagi-Mdonya", 
"Mpululu", "Msolwa", "Mtemere"), class = "factor"), Tlength = c(35.2, 
86.7, 93, 75, 27.2, 74.4, 93, 10.3, 45.8, 35.2, 78.2, 10.3, 71, 
45.8, 93, 35.2, 63.9, 35.2, 77.9, 86.6, 93, 10.3, 45.8, 10.3, 
45.8, 68.9, 93, 10.3, 45.8, 93, 86.7, 90.5, 93, 45.8, 35.2, 81.6, 
10.3, 45.8, 88.2, 93, 10.3, 35.2, 64.6, 82.3, 93, 10.3, 45.8, 
77.9, 93, 45.8, 10.3, 90.3, 93, 10.3, 45.8, 35.2, 77.4, 87.5, 
93, 10.3, 45.8, 66, 35.2, 71.2, 85.7, 93, 87.5, 45.8, 85.5, 69.6, 
97.8, 10.3, 10.3, 93, 45.8, 86.6, 35.2, 35.2, 71.9, 77.9, 88.5, 
80, 85.2, 93, 56.1, 85.5, 56.1, 97.6, 81.8, 79.7, 35.2, 71.1, 
81.9, 53.8, 86.5, 68.7, 60.7, 78.7, 56.6, 66.9, 71.8, 79.2, 82.6, 
71.8, 92.4, 85.6, 78.5, 77.3)), row.names = c(NA, -108L), class = "data.frame")

Here’s my session info:

R version 4.0.3 (2020-10-10)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 19044)

Matrix products: default

locale:
[1] LC_COLLATE=English_Ireland.1252  LC_CTYPE=English_Ireland.1252   
[3] LC_MONETARY=English_Ireland.1252 LC_NUMERIC=C                    
[5] LC_TIME=English_Ireland.1252    

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] sjPlot_2.8.6       sjstats_0.18.1     interactions_1.1.5 tidybayes_3.0.0    readxl_1.3.1      
 [6] brms_2.16.3        Rcpp_1.0.8.3       forcats_0.5.2      stringr_1.4.0      dplyr_1.0.9       
[11] purrr_0.3.4        readr_2.1.2        tidyr_1.2.0        tibble_3.1.6       ggplot2_3.3.5     
[16] tidyverse_1.3.2   

loaded via a namespace (and not attached):
  [1] backports_1.4.1      jtools_2.1.0         plyr_1.8.6           igraph_1.2.6        
  [5] splines_4.0.3        svUnit_1.0.6         crosstalk_1.1.0.1    rstantools_2.1.1    
  [9] inline_0.3.16        digest_0.6.27        htmltools_0.5.1.1    rsconnect_0.8.16    
 [13] fansi_0.4.1          magrittr_2.0.3       checkmate_2.0.0      googlesheets4_1.0.1 
 [17] tzdb_0.1.2           modelr_0.1.8         RcppParallel_5.0.2   matrixStats_0.57.0  
 [21] xts_0.12.1           prettyunits_1.1.1    colorspace_1.4-1     rvest_1.0.3         
 [25] ggdist_3.0.0         xfun_0.31            haven_2.5.1          callr_3.7.0         
 [29] crayon_1.5.1         jsonlite_1.7.2       lme4_1.1-25          zoo_1.8-8           
 [33] glue_1.6.2           gtable_0.3.0         gargle_1.2.0         emmeans_1.5.2-1     
 [37] sjmisc_2.8.5         V8_3.3.1             distributional_0.2.2 pkgbuild_1.3.1      
 [41] rstan_2.21.2         abind_1.4-5          scales_1.1.1         mvtnorm_1.1-3       
 [45] DBI_1.1.0            ggeffects_0.16.0     miniUI_0.1.1.1       performance_0.7.1   
 [49] xtable_1.8-4         diffobj_0.3.5        stats4_4.0.3         StanHeaders_2.21.0-6
 [53] DT_0.16              htmlwidgets_1.5.3    httr_1.4.2           threejs_0.3.3       
 [57] arrayhelpers_1.1-0   posterior_1.1.0      ellipsis_0.3.2       pkgconfig_2.0.3     
 [61] loo_2.4.1            farver_2.0.3         dbplyr_2.2.1         utf8_1.1.4          
 [65] labeling_0.4.2       effectsize_0.4.0     tidyselect_1.1.2     rlang_1.0.4         
 [69] reshape2_1.4.4       later_1.1.0.1        munsell_0.5.0        cellranger_1.1.0    
 [73] tools_4.0.3          cli_3.3.0            generics_0.1.0       sjlabelled_1.1.7    
 [77] broom_1.0.0          ggridges_0.5.2       fastmap_1.0.1        knitr_1.39          
 [81] processx_3.5.0       fs_1.5.0             pander_0.6.3         nlme_3.1-149        
 [85] mime_0.11            projpred_2.0.2       xml2_1.3.3           compiler_4.0.3      
 [89] bayesplot_1.7.2      shinythemes_1.1.2    rstudioapi_0.13      curl_4.3.2          
 [93] gamm4_0.2-6          reprex_2.0.2         statmod_1.4.35       stringi_1.5.3       
 [97] parameters_0.13.0    ps_1.4.0             Brobdingnag_1.2-6    lattice_0.20-41     
[101] Matrix_1.2-18        nloptr_1.2.2.2       markdown_1.1         shinyjs_2.0.0       
[105] tensorA_0.36.2       vctrs_0.4.1          pillar_1.6.4         lifecycle_1.0.1     
[109] bridgesampling_1.0-0 estimability_1.3     insight_0.13.2       httpuv_1.5.4        
[113] R6_2.5.0             promises_1.1.1       gridExtra_2.3        codetools_0.2-16    
[117] boot_1.3-25          colourpicker_1.1.0   MASS_7.3-53          gtools_3.8.2        
[121] assertthat_0.2.1     withr_2.4.3          shinystan_2.5.0      bayestestR_0.9.0    
[125] mgcv_1.8-33          parallel_4.0.3       hms_1.1.2            grid_4.0.3          
[129] coda_0.19-4          minqa_1.2.4          googledrive_2.0.0    shiny_1.5.0         
[133] lubridate_1.8.0      base64enc_0.1-3      dygraphs_1.1.1.6

This was just a consequence of me placing the argument outside of the brackets for the conditional effects function. The following works fine:

plot(conditional_effects(nbglm_awb_default, prob = 0),
     ask = FALSE,
     points = T,
     offset = T)