@martinmodrak is a far better resource than I am, so absolutely look to his posts for guidance here. As he noted, I don’t think that additional iterations will fix the problems and that failure to converge should be treated as a misspecification problem rather than an estimator problem. I just wanted to flesh out some things from your initial post that struck me as unusual.

I believe that, to answer your original question, there isn’t a way to pick up and keep fitting a model that has already been estimated. You can avoid recompiling the model at least by using the `update()`

function.

Do you mind sharing the steps that you’ve taken to get to this point? The fact that you are running 8000 iterations but 7000 of these are warmup is a little odd to me, so it makes me think that you’ve tried various forms of this model.

It’d also be helpful to potentially see what the actual outcome of your model fit is. Are all of the parameters very poorly estimated or are some better than others?

Additionally, is there a reason you’re taking the log of your variables in the formula versus transforming the variables first and fitting them there? I’ve made the mistake of wrapping stuff in `log()`

and then forgetting that I had zero values in my variables, so the model wasn’t being fit on the data I thought it was since the log(0) returns NA. It’s always good to double check that those helper/convenience functions aren’t messing something up.

Regardless, the fact that your outcome is log-transformed suggests to me that it is a strictly positive value, meaning that the skew normal distribution (and its associated distributional parameters) may not be the most appropriate thing to fit. Have you tried other likelihoods?