Working on a model that uses a cholesky parameterization to model correlated parameters and I’m seeing something strange — all the raw parameters of the model have good rhat/ess, but some transformed parameters have poor rhat/ess. Is this a problem for interpretation? Or is this not something to worry about given all the parameters have good rhat/ess? (My hunch is that I do need to worry about this.)
Here’s an example output of the parameters. All have good-enough rhat/ess (this was run for 4,000 iterations).
#> # A tibble: 5 × 10
#> variable mean median sd mad q5 q95 rhat ess_bulk ess_tail
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 eta_od[343,1,2] 0.662 0.661 0.589 0.592 -0.320 1.62 1.00 5252. 3258.
#> 2 eta_od[343,2,2] -0.209 -0.229 0.989 0.981 -1.85 1.41 1.00 8411. 2923.
#> 3 logit_rho 4.93 4.86 0.642 0.617 4.00 6.04 1.00 1036. 1825.
#> 4 log_sigma_o -3.24 -3.24 0.0446 0.0456 -3.31 -3.17 1.00 1589. 2403.
#> 5 log_sigma_d -3.34 -3.33 0.0487 0.0485 -3.42 -3.26 1.00 1698. 2451.
The covariance matrix is derived from logit_rho
, log_sigma_o
, and log_sigma_d
in the transformed parameters block. The rhat/ess for the covariance matrix is pretty similar to the raw parameters, which makes sense.
#> # A tibble: 4 × 10
#> variable mean median sd mad q5 q95 rhat ess_bulk ess_tail
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Sigma_od[1,1] 0.00154 0.00153 0.000138 0.000138 0.00133 0.00178 1.00 1589. 2403.
#> 2 Sigma_od[2,1] 0.00137 0.00137 0.000115 0.000114 0.00119 0.00157 1.00 1490. 2304.
#> 3 Sigma_od[1,2] 0.00137 0.00137 0.000115 0.000114 0.00119 0.00157 1.00 1490. 2304.
#> 4 Sigma_od[2,2] 0.00127 0.00127 0.000124 0.000122 0.00108 0.00149 1.00 1698. 2451.
Another value derived in the generated quantities block, beta_od
, however, has a really low ess. I’m not sure why this is the case, since it’s derived from raw parameters with far higher ess. In pseudocode, beta_od = cholesky_decompose(Sigma_od) * eta_od;
#> # A tibble: 2 × 10
#> variable mean median sd mad q5 q95 rhat ess_bulk ess_tail
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 beta_od[343,1,2] 0.00738 0.00746 0.0233 0.0236 -0.0313 0.0449 1.01 265. 1562.
#> 2 beta_od[343,2,2] -0.0581 -0.0581 0.0238 0.0236 -0.0973 -0.0192 1.02 219. 1333.