Estimating memory requirements based on model syntax

Thank you for the suggestions. After reviewing the suggestions for a similar post I did years ago for a reduced version of this model, and your additional tips, this is what I came up with. I will test it and see how much faster it runs and how much difference it makes in memory usage.

// Stan model syntax combining the Modified DG-IRT for response accuracy and
// DG-LNRT for response time

data{
    int <lower=1> J;                       // number of examinees          
    int <lower=1> I;                       // number of items
    int <lower=1> n_obs;                   // number of observations (J x I - missing responses)
    array[n_obs] int<lower=1> p_loc;       // person indicator   
    array[n_obs] int<lower=1> i_loc;       // item indicator
    array[n_obs] real RT;                  // vector of log of responses
    array[n_obs] int<lower=0,upper=1> Y;   // vector of item responses
}

parameters {
  
// Parameters common for both response time and response accuracy component  
  
  vector<lower=0,upper=1>[I] pC; // vector of length I for the probability of item compromise status
  
  vector<lower=0,upper=1>[J] pH; // vector of length J for the probability of examinee item peknowledge 

// Parameters for the item parameters component  

  real mu_beta;                     // mean for time intensity parameters
  real mu_alpha;                    // mean for log of time discrimination parameters
  real mu_b;                        // mean for item difficulty parameters
  vector<lower=0>[3] sigma_I;       // vector of standard deviations for item parameters
  cholesky_factor_corr[3] Lomega_I; // Cholesky factors of 3x3 correlation matrix for item parameters
  
// Parameters for the person parameters component  
  
  real mu_thetat;                   // mean for theta_t
  vector<lower=0>[2] sigma_P;       // vector of standard deviations for latent trait parameters
  cholesky_factor_corr[2] Lomega_P; // Cholesky factors of 2x2 correlation matrix for person parameters


  real<lower=0> mu_delta_tau;         // mean for change from taut to tau_c
  real<lower=0> mu_delta_theta;       // mean for change from thetat to thetac
  vector<lower=0>[2] sigma_D;        // vector of standard deviations for change in person parameters
  cholesky_factor_corr[2] Lomega_D;  // Cholesky factors of 2x2 correlation matrix for person parameters
 
  array[I] vector[3] item;
  array[J] vector[2] person;
  array[J] vector<lower=0>[2] delta;
}


transformed parameters{
  vector[2] mu_P = [0,mu_thetat]';                 // vector for mean of person parameters
                                                   // mu_taut is fixed to 0
  vector[3] mu_I = [mu_alpha,mu_beta,mu_b]';       // vector for mean of item parameters
  vector[2] mu_D = [mu_delta_tau,mu_delta_theta]'; // vector for mean of change parameters

  // The sum of b parameters is fixed to 0 for the response accuracy component
  // this is for model identification for the response accuracy component
  
  vector[I] b_star;
  
  for(i in 1:I){
   b_star[i]= item[i][3];
  }
  
  vector[I] b = b_star;
   b[1] = -sum(b_star[2:I]);
}

model{

  sigma_P   ~ exponential(1);
  mu_thetat ~ normal(0,1);
  Lomega_P  ~ lkj_corr_cholesky(1);
    
  sigma_I   ~ exponential(1);
  mu_beta   ~ normal(4,1);
  mu_alpha  ~ lognormal(0,0.5);
  mu_b      ~ normal(0,1);
  Lomega_I  ~ lkj_corr_cholesky(1);
   
  sigma_D        ~ exponential(1);
  mu_delta_tau   ~ normal(0,1);
  mu_delta_theta ~ normal(0,1);
  Lomega_D       ~ lkj_corr_cholesky(1);
 
  person     ~  multi_normal_cholesky(mu_P,diag_pre_multiply(sigma_P, Lomega_P));
  item       ~  multi_normal_cholesky(mu_I,diag_pre_multiply(sigma_I, Lomega_I));
  delta      ~  multi_normal_cholesky(mu_D,diag_pre_multiply(sigma_D, Lomega_D));

  pC ~ beta(1,1);
  pH ~ beta(1,1);
  
// Joint density of response time and response accuracy  

  vector[I] log1m_pC = log1m(pC) ;
  vector[I] log_pC   = log(pC) ;
  vector[J] log1m_pH = log1m(pH) ;
  vector[J] log_pH   = log(pH) ;

  vector[n_obs] norm_p_t ;
  vector[n_obs] norm_p_c;
  vector[n_obs] bern_p_t ;
  vector[n_obs] bern_p_c;
  
  for (i in 1:n_obs) {
    // item[i_loc[i]][2] is the beta parameter for the (i_loc[i])th item
    // item[i_loc[i]][1] is the alpha parameter for the (i_loc[i])th item
    // person[p_loc[i]][1] is tau_t for the (p_loc[i])th person
    // (person[p_loc[i]][1]+delta[p_loc[i]][1]) is tau_c for the (p_loc[i])th person
    
    real p_taut = item[i_loc[i]][2] - person[p_loc[i]][1];
    real p_tauc = item[i_loc[i]][2] - (person[p_loc[i]][1]+delta[p_loc[i]][1]);
    real alpha  = 1/exp(item[i_loc[i]][1]);
    norm_p_t[i] = normal_lpdf(RT[i] | p_taut, alpha);  
    norm_p_c[i] = normal_lpdf(RT[i] | p_tauc, alpha);  
    
    // b[i_loc[i]] is the b parameter for the (i_loc[i])th item
    // person[p_loc[i]][2] is theta_t for the (p_loc[i])th person
    // (person[p_loc[i]][2]+delta[p_loc[i]][2]) is theta_c for the (p_loc[i])th person

    real p_thetat = person[p_loc[i]][2] - b[i_loc[i]];  
    real p_thetac = (person[p_loc[i]][2]+delta[p_loc[i]][2]) - b[i_loc[i]];  
    bern_p_t[i] = bernoulli_logit_lpmf(Y[i] | p_thetat); 
    bern_p_c[i] = bernoulli_logit_lpmf(Y[i] | p_thetac); 
  }
  
  matrix[n_obs,4] lprt;
  lprt[,1] = log1m_pC[i_loc] + log1m_pH[p_loc] + norm_p_t;  // T = 0, C=0
  lprt[,2] = log1m_pC[i_loc] + log_pH[p_loc]   + norm_p_t;  // T = 1, C=0
  lprt[,3] = log_pC[i_loc]   + log1m_pH[p_loc] + norm_p_t;  // T = 0, C=1
  lprt[,4] = log_pC[i_loc]   + log_pH[p_loc]   + norm_p_c;  // T = 1, C=1 

  matrix[n_obs,4] lpr;
  lpr[,1] = log1m_pC[i_loc] + log1m_pH[p_loc] + bern_p_t;  // T = 0, C=0
  lpr[,2] = log1m_pC[i_loc] + log_pH[p_loc]   + bern_p_t;  // T = 1, C=0
  lpr[,3] = log_pC[i_loc]   + log1m_pH[p_loc] + bern_p_t;  // T = 0, C=1
  lpr[,4] = log_pC[i_loc]   + log_pH[p_loc]   + bern_p_c;  // T = 1, C=1 

  vector[n_obs] lps;
  for (i in 1:n_obs) {
    lps[i] = log_sum_exp(lprt[i,]) + log_sum_exp(lpr[i,]);
  }
}