Following on this post HERE, can anyone explain the difference in summary tables from mgcv
and brms
please?
For example:
gam1 <-gam(DV ~
ExpTrialOrder +
FactorA +
s(CovariateM) +
s(ExpTrialOrder, Participant, bs='fs', m=1),
...)
brms_gam1 <-brm(DV ~
ExpTrialOrder +
FactorA +
s(CovariateM) +
s(ExpTrialOrder, Participant, bs='fs', m=1),
...)
would give something like this:
# mgcv
# Approximate significance of smooth terms:
# edf Ref.df F p-value
# ...
# s(TrialOrder.z,Participant) 93.58 399 2.218 <2e-16
# brms
# Smooth Terms:
# Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
# ...
# sds(szTrialOrderSubject_nr_1) 0.31 0.05 0.22 0.41 1.00 3389 5414
# sds(szTrialOrderSubject_nr_2) 2.07 0.26 1.62 2.63 1.00 3734 5053
How can one compare the factor smooth outputs from these two tables? And what does each line from brms
, with _1
and _2
mean?
- Operating System: macOS Ventura
- brms Version: 2.19.0