What is the default prior used for a simplex when none is specified? Take this very simple example model:
parameters {
simplex[2] nu;
real b0;
}
model {
b0 ~ normal(0, 2);
}
I can estimate in rstan:
prior_stan <- sampling(priordist, chains = 4, iter = 55000, warmup = 5000, cores = 4)
prior_stan
Inference for Stan model: 2675762a00eb785792355388e5d9f28c.
4 chains, each with iter=55000; warmup=5000; thin=1;
post-warmup draws per chain=50000, total post-warmup draws=200000.
mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat
nu[1] 0.50 0.00 0.29 0.02 0.25 0.50 0.75 0.97 127310 1
nu[2] 0.50 0.00 0.29 0.03 0.25 0.50 0.75 0.98 127310 1
b0 0.01 0.01 2.00 -3.91 -1.33 0.01 1.36 3.93 106860 1
lp__ -2.50 0.00 1.10 -5.46 -2.93 -2.16 -1.71 -1.42 60013 1
Samples were drawn using NUTS(diag_e) at Tue Jul 16 12:11:56 2019.
For each parameter, n_eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor on split chains (at
convergence, Rhat=1).
Does the simplex use a dirichlet(1)
by default?