As part of using Gaussian processes on graphs (cf. Scalable Gaussian process inference), I would like to evaluate the Matern 3/2 covariance function. Unfortunately, I receive an error message gp_matern32_cov: length scale is nan, but must be not nan!
, but the length scale is definitely not nan
as I have hard-coded it to be 0.7
.
I’ve tried to produce a minimal reproducible example here, but it is not very minimal because even slight changes to the code result in the error message disappearing. Unfortunately, in my actual code, I need to use the form that results in an error. The code is shown below. In short, it iterates over nodes in a directed acyclic graph and evaluates the covariance between parents or predecessors of each node.
transformed data {
// Dimensions of the covariate space.
int p = 1;
// Number of nodes in the graph.
int num_nodes = 10;
// Dummy locations for each node.
array[num_nodes] vector[p] x = rep_array(zeros_vector(p), num_nodes);
// Number of edges in the graph.
int num_edges_ = (num_nodes * (num_nodes - 1)) %/% 2;
// Edge list of {{parents ...}, {children ...}}.
array[2, num_edges_] int edges;
// Number of outgoing edges towards parents for each node.
array [num_nodes] int degrees;
// Create a complete directed acyclic graph and store the degrees.
int edge = 1;
for (i in 1 : num_nodes) {
degrees[i] = i - 1;
for (j in 1 : i - 1) {
edges[1, edge] = j;
edges[2, edge] = i;
edge += 1;
}
}
}
generated quantities {
int offset_ = 1;
// Iterate over all nodes.
for (i in 1 : size(x)) {
// Get the parents of the node.
int k = degrees[i];
array [k] int predecessors = segment(edges[1], offset_, k);
// Nothing to be done here if there are no parents.
if (k == 0) {
continue;
}
// Print out the variables for debugging.
print(
"k=", k,
"; x=", x,
"; predecessors=", predecessors,
"; x[predecessors]=", x[predecessors]
);
// Evaluate the covariance.
matrix[k, k] cov22 = gp_matern32_cov(x[predecessors], 1.3, {0.7});
// Print that we've made it past the evaluation.
print("ok");
offset_ += k;
}
real success = 1;
}
The model manages to get to the end of the loop but then fails on the last iteration. Here’s the output.
method = sample (Default)
sample
num_samples = 1
num_warmup = 1
save_warmup = 0 (Default)
thin = 1 (Default)
adapt
engaged = 1 (Default)
gamma = 0.05 (Default)
delta = 0.8 (Default)
kappa = 0.75 (Default)
t0 = 10 (Default)
init_buffer = 75 (Default)
term_buffer = 50 (Default)
window = 25 (Default)
save_metric = 0 (Default)
algorithm = fixed_param
num_chains = 1 (Default)
id = 1 (Default)
data
file = /tmp/tmppmvkzr3_/fyxjwv2b.json
init = 2 (Default)
random
seed = 15348
output
file = /tmp/tmppmvkzr3_/matern-error-directnqpdttga/matern-error-direct-20240614200649.csv
diagnostic_file = (Default)
refresh = 100 (Default)
sig_figs = -1 (Default)
profile_file = profile.csv (Default)
save_cmdstan_config = 0 (Default)
num_threads = 1 (Default)
Iteration: 1 / 1 [100%] (Sampling)
k=1; x=[[0],[0],[0],[0],[0],[0],[0],[0],[0],[0]]; predecessors=[1]; x[predecessors]=[[0]]
ok
k=2; x=[[0],[0],[0],[0],[0],[0],[0],[0],[0],[0]]; predecessors=[1,2]; x[predecessors]=[[0],[0]]
ok
k=3; x=[[0],[0],[0],[0],[0],[0],[0],[0],[0],[0]]; predecessors=[1,2,3]; x[predecessors]=[[0],[0],[0]]
ok
k=4; x=[[0],[0],[0],[0],[0],[0],[0],[0],[0],[0]]; predecessors=[1,2,3,4]; x[predecessors]=[[0],[0],[0],[0]]
ok
k=5; x=[[0],[0],[0],[0],[0],[0],[0],[0],[0],[0]]; predecessors=[1,2,3,4,5]; x[predecessors]=[[0],[0],[0],[0],[0]]
ok
k=6; x=[[0],[0],[0],[0],[0],[0],[0],[0],[0],[0]]; predecessors=[1,2,3,4,5,6]; x[predecessors]=[[0],[0],[0],[0],[0],[0]]
ok
k=7; x=[[0],[0],[0],[0],[0],[0],[0],[0],[0],[0]]; predecessors=[1,2,3,4,5,6,7]; x[predecessors]=[[0],[0],[0],[0],[0],[0],[0]]
ok
k=8; x=[[0],[0],[0],[0],[0],[0],[0],[0],[0],[0]]; predecessors=[1,2,3,4,5,6,7,8]; x[predecessors]=[[0],[0],[0],[0],[0],[0],[0],[0]]
ok
k=9; x=[[0],[0],[0],[0],[0],[0],[0],[0],[0],[0]]; predecessors=[1,2,3,4,5,6,7,8,9]; x[predecessors]=[[0],[0],[0],[0],[0],[0],[0],[0],[0]]
Exception: gp_matern32_cov: length scale is nan, but must be not nan! (in 'matern-error-direct.stan', line 27, column 4 to column 70)
Elapsed Time: 0 seconds (Warm-up)
0 seconds (Sampling)
0 seconds (Total)
Surprisingly, making minor changes to the code results in it succeeding. E.g.,
gp_matern52_cov
works if used instead ofgp_matern32_cov
(see here).- using a scalar length scale
0.7
instead of{0.7}
works (see here). - increasing the dimensions to
p = 2
works on my laptop (macOS 14.4.1, M1 silicon) (see here), but it doesn’t work on Linux.
A few runs of the models are available here.
Do you know what might be happening here? Thank you for the time!