This works.
Build and sampling details
stn_mdR> stancode ← ‘data {real y_mean;} parameters {real y;} model {y ~ normal(y_mean,1);}’
stn_mdR> mod ← stan_model(model_code = stancode, verbose = TRUE)
TRANSLATING MODEL ‘16a540c6086086816528e4524def24d9’ FROM Stan CODE TO C++ CODE NOW.
successful in parsing the Stan model ‘16a540c6086086816528e4524def24d9’.
COMPILING THE C++ CODE FOR MODEL ‘16a540c6086086816528e4524def24d9’ NOW.
OS: x86_64, darwin15.6.0; rstan: 2.19.2; Rcpp: 1.0.2; inline: 0.3.15
setting environment variables:
PKG_LIBS = -L’/Library/Frameworks/R.framework/Versions/3.6/Resources/library/StanHeaders/lib/’ -lStanHeaders
PKG_CPPFLAGS = -I"/Library/Frameworks/R.framework/Versions/3.6/Resources/library/Rcpp/include/" -I"/Library/Frameworks/R.framework/Versions/3.6/Resources/library/RcppEigen/include/" -I"/Library/Frameworks/R.framework/Versions/3.6/Resources/library/RcppEigen/include/unsupported" -I"/Library/Frameworks/R.framework/Versions/3.6/Resources/library/BH/include" -I"/Library/Frameworks/R.framework/Versions/3.6/Resources/library/StanHeaders/include/src/" -I"/Library/Frameworks/R.framework/Versions/3.6/Resources/library/StanHeaders/include/" -I"/Library/Frameworks/R.framework/Versions/3.6/Resources/library/rstan/include" -DEIGEN_NO_DEBUG -DBOOST_DISABLE_ASSERTS
Program source :
1 :
2 : // includes from the plugin
3 : // [[Rcpp::plugins(cpp14)]]
4 :
5 : // user includes
6 : #define STAN__SERVICES__COMMAND_HPP// Code generated by Stan version 2.19.1
7 :
8 : #include <stan/model/model_header.hpp>
9 :
10 : namespace modeldee1452d10_16a540c6086086816528e4524def24d9_namespace {
11 :
12 : using std::istream;
13 : using std::string;
14 : using std::stringstream;
15 : using std::vector;
16 : using stan::io::dump;
17 : using stan::math::lgamma;
18 : using stan::model::prob_grad;
19 : using namespace stan::math;
20 :
21 : static int current_statement_begin__;
22 :
23 : stan::io::program_reader prog_reader__() {
24 : stan::io::program_reader reader;
25 : reader.add_event(0, 0, “start”, “modeldee1452d10_16a540c6086086816528e4524def24d9”);
26 : reader.add_event(3, 1, “end”, “modeldee1452d10_16a540c6086086816528e4524def24d9”);
27 : return reader;
28 : }
29 :
30 : class modeldee1452d10_16a540c6086086816528e4524def24d9 : public prob_grad {
31 : private:
32 : double y_mean;
33 : public:
34 : modeldee1452d10_16a540c6086086816528e4524def24d9(stan::io::var_context& context__,
35 : std::ostream* pstream__ = 0)
36 : : prob_grad(0) {
37 : ctor_body(context__, 0, pstream__);
38 : }
39 :
40 : modeldee1452d10_16a540c6086086816528e4524def24d9(stan::io::var_context& context__,
41 : unsigned int random_seed__,
42 : std::ostream* pstream__ = 0)
43 : : prob_grad(0) {
44 : ctor_body(context__, random_seed__, pstream__);
45 : }
46 :
47 : void ctor_body(stan::io::var_context& context__,
48 : unsigned int random_seed__,
49 : std::ostream* pstream__) {
50 : typedef double local_scalar_t__;
51 :
52 : boost::ecuyer1988 base_rng__ =
53 : stan::services::util::create_rng(random_seed__, 0);
54 : (void) base_rng__; // suppress unused var warning
55 :
56 : current_statement_begin__ = -1;
57 :
58 : static const char* function__ = “modeldee1452d10_16a540c6086086816528e4524def24d9_namespace::modeldee1452d10_16a540c6086086816528e4524def24d9”;
59 : (void) function__; // dummy to suppress unused var warning
60 : size_t pos__;
61 : (void) pos__; // dummy to suppress unused var warning
62 : std::vector vals_i__;
63 : std::vector vals_r__;
64 : local_scalar_t__ DUMMY_VAR__(std::numeric_limits::quiet_NaN());
65 : (void) DUMMY_VAR__; // suppress unused var warning
66 :
67 : try {
68 : // initialize data block variables from context__
69 : current_statement_begin__ = 1;
70 : context__.validate_dims(“data initialization”, “y_mean”, “double”, context__.to_vec());
71 : y_mean = double(0);
72 : vals_r__ = context__.vals_r(“y_mean”);
73 : pos__ = 0;
74 : y_mean = vals_r__[pos__++];
75 :
76 :
77 : // initialize transformed data variables
78 : // execute transformed data statements
79 :
80 : // validate transformed data
81 :
82 : // validate, set parameter ranges
83 : num_params_r__ = 0U;
84 : param_ranges_i__.clear();
85 : current_statement_begin__ = 1;
86 : num_params_r__ += 1;
87 : } catch (const std::exception& e) {
88 : stan::lang::rethrow_located(e, current_statement_begin__, prog_reader__());
89 : // Next line prevents compiler griping about no return
90 : throw std::runtime_error(“*** IF YOU SEE THIS, PLEASE REPORT A BUG ");
91 : }
92 : }
93 :
94 : ~modeldee1452d10_16a540c6086086816528e4524def24d9() { }
95 :
96 :
97 : void transform_inits(const stan::io::var_context& context__,
98 : std::vector& params_i__,
99 : std::vector& params_r__,
100 : std::ostream pstream__) const {
101 : typedef double local_scalar_t__;
102 : stan::io::writer writer__(params_r__, params_i__);
103 : size_t pos__;
104 : (void) pos__; // dummy call to supress warning
105 : std::vector vals_r__;
106 : std::vector vals_i__;
107 :
108 : current_statement_begin__ = 1;
109 : if (!(context__.contains_r(“y”)))
110 : stan::lang::rethrow_located(std::runtime_error(std::string(“Variable y missing”)), current_statement_begin__, prog_reader__());
111 : vals_r__ = context__.vals_r(“y”);
112 : pos__ = 0U;
113 : context__.validate_dims(“parameter initialization”, “y”, “double”, context__.to_vec());
114 : double y(0);
115 : y = vals_r__[pos__++];
116 : try {
117 : writer__.scalar_unconstrain(y);
118 : } catch (const std::exception& e) {
119 : stan::lang::rethrow_located(std::runtime_error(std::string("Error transforming variable y: ") + e.what()), current_statement_begin__, prog_reader__());
120 : }
121 :
122 : params_r__ = writer__.data_r();
123 : params_i__ = writer__.data_i();
124 : }
125 :
126 : void transform_inits(const stan::io::var_context& context,
127 : Eigen::Matrix<double, Eigen::Dynamic, 1>& params_r,
128 : std::ostream pstream__) const {
129 : std::vector params_r_vec;
130 : std::vector params_i_vec;
131 : transform_inits(context, params_i_vec, params_r_vec, pstream__);
132 : params_r.resize(params_r_vec.size());
133 : for (int i = 0; i < params_r.size(); ++i)
134 : params_r(i) = params_r_vec[i];
135 : }
136 :
137 :
138 : template <bool propto__, bool jacobian__, typename T__>
139 : T__ log_prob(std::vector<T__>& params_r__,
140 : std::vector& params_i__,
141 : std::ostream pstream__ = 0) const {
142 :
143 : typedef T__ local_scalar_t__;
144 :
145 : local_scalar_t__ DUMMY_VAR__(std::numeric_limits::quiet_NaN());
146 : (void) DUMMY_VAR__; // dummy to suppress unused var warning
147 :
148 : T__ lp__(0.0);
149 : stan::math::accumulator<T__> lp_accum__;
150 : try {
151 : stan::io::reader<local_scalar_t__> in__(params_r__, params_i__);
152 :
153 : // model parameters
154 : current_statement_begin__ = 1;
155 : local_scalar_t__ y;
156 : (void) y; // dummy to suppress unused var warning
157 : if (jacobian__)
158 : y = in__.scalar_constrain(lp__);
159 : else
160 : y = in__.scalar_constrain();
161 :
162 : // model body
163 :
164 : current_statement_begin__ = 1;
165 : lp_accum__.add(normal_log<propto__>(y, y_mean, 1));
166 :
167 : } catch (const std::exception& e) {
168 : stan::lang::rethrow_located(e, current_statement_begin__, prog_reader__());
169 : // Next line prevents compiler griping about no return
170 : throw std::runtime_error(”*** IF YOU SEE THIS, PLEASE REPORT A BUG ");
171 : }
172 :
173 : lp_accum__.add(lp__);
174 : return lp_accum__.sum();
175 :
176 : } // log_prob()
177 :
178 : template <bool propto, bool jacobian, typename T_>
179 : T_ log_prob(Eigen::Matrix<T_,Eigen::Dynamic,1>& params_r,
180 : std::ostream pstream = 0) const {
181 : std::vector<T_> vec_params_r;
182 : vec_params_r.reserve(params_r.size());
183 : for (int i = 0; i < params_r.size(); ++i)
184 : vec_params_r.push_back(params_r(i));
185 : std::vector vec_params_i;
186 : return log_prob<propto,jacobian,T_>(vec_params_r, vec_params_i, pstream);
187 : }
188 :
189 :
190 : void get_param_names(std::vectorstd::string& names__) const {
191 : names__.resize(0);
192 : names__.push_back(“y”);
193 : }
194 :
195 :
196 : void get_dims(std::vector<std::vector<size_t> >& dimss__) const {
197 : dimss__.resize(0);
198 : std::vector<size_t> dims__;
199 : dims__.resize(0);
200 : dimss__.push_back(dims__);
201 : }
202 :
203 : template
204 : void write_array(RNG& base_rng__,
205 : std::vector& params_r__,
206 : std::vector& params_i__,
207 : std::vector& vars__,
208 : bool include_tparams__ = true,
209 : bool include_gqs__ = true,
210 : std::ostream pstream__ = 0) const {
211 : typedef double local_scalar_t__;
212 :
213 : vars__.resize(0);
214 : stan::io::reader<local_scalar_t__> in__(params_r__, params_i__);
215 : static const char function__ = “modeldee1452d10_16a540c6086086816528e4524def24d9_namespace::write_array”;
216 : (void) function__; // dummy to suppress unused var warning
217 :
218 : // read-transform, write parameters
219 : double y = in__.scalar_constrain();
220 : vars__.push_back(y);
221 :
222 : double lp__ = 0.0;
223 : (void) lp__; // dummy to suppress unused var warning
224 : stan::math::accumulator lp_accum__;
225 :
226 : local_scalar_t__ DUMMY_VAR__(std::numeric_limits::quiet_NaN());
227 : (void) DUMMY_VAR__; // suppress unused var warning
228 :
229 : if (!include_tparams__ && !include_gqs__) return;
230 :
231 : try {
232 : if (!include_gqs__ && !include_tparams__) return;
233 : if (!include_gqs__) return;
234 : } catch (const std::exception& e) {
235 : stan::lang::rethrow_located(e, current_statement_begin__, prog_reader__());
236 : // Next line prevents compiler griping about no return
237 : throw std::runtime_error(“*** IF YOU SEE THIS, PLEASE REPORT A BUG ");
238 : }
239 : }
240 :
241 : template
242 : void write_array(RNG& base_rng,
243 : Eigen::Matrix<double,Eigen::Dynamic,1>& params_r,
244 : Eigen::Matrix<double,Eigen::Dynamic,1>& vars,
245 : bool include_tparams = true,
246 : bool include_gqs = true,
247 : std::ostream pstream = 0) const {
248 : std::vector params_r_vec(params_r.size());
249 : for (int i = 0; i < params_r.size(); ++i)
250 : params_r_vec[i] = params_r(i);
251 : std::vector vars_vec;
252 : std::vector params_i_vec;
253 : write_array(base_rng, params_r_vec, params_i_vec, vars_vec, include_tparams, include_gqs, pstream);
254 : vars.resize(vars_vec.size());
255 : for (int i = 0; i < vars.size(); ++i)
256 : vars(i) = vars_vec[i];
257 : }
258 :
259 : static std::string model_name() {
260 : return “modeldee1452d10_16a540c6086086816528e4524def24d9”;
261 : }
262 :
263 :
264 : void constrained_param_names(std::vectorstd::string& param_names__,
265 : bool include_tparams__ = true,
266 : bool include_gqs__ = true) const {
267 : std::stringstream param_name_stream__;
268 : param_name_stream__.str(std::string());
269 : param_name_stream__ << “y”;
270 : param_names__.push_back(param_name_stream__.str());
271 :
272 : if (!include_gqs__ && !include_tparams__) return;
273 :
274 : if (include_tparams__) {
275 : }
276 :
277 : if (!include_gqs__) return;
278 : }
279 :
280 :
281 : void unconstrained_param_names(std::vectorstd::string& param_names__,
282 : bool include_tparams__ = true,
283 : bool include_gqs__ = true) const {
284 : std::stringstream param_name_stream__;
285 : param_name_stream__.str(std::string());
286 : param_name_stream__ << “y”;
287 : param_names__.push_back(param_name_stream__.str());
288 :
289 : if (!include_gqs__ && !include_tparams__) return;
290 :
291 : if (include_tparams__) {
292 : }
293 :
294 : if (!include_gqs__) return;
295 : }
296 :
297 : }; // model
298 :
299 : } // namespace
300 :
301 : typedef modeldee1452d10_16a540c6086086816528e4524def24d9_namespace::modeldee1452d10_16a540c6086086816528e4524def24d9 stan_model;
302 :
303 : #include <rstan/rstaninc.hpp>
304 : /
305 : * Define Rcpp Module to expose stan_fit’s functions to R.
306 : */
307 : RCPP_MODULE(stan_fit4modeldee1452d10_16a540c6086086816528e4524def24d9_mod){
308 : Rcpp::class_<rstan::stan_fit<modeldee1452d10_16a540c6086086816528e4524def24d9_namespace::modeldee1452d10_16a540c6086086816528e4524def24d9,
309 : boost::random::ecuyer1988> >(“stan_fit4modeldee1452d10_16a540c6086086816528e4524def24d9”)
310 : // .constructorRcpp::List()
311 : .constructor<SEXP, SEXP, SEXP>()
312 : // .constructor<SEXP, SEXP>()
313 : .method(“call_sampler”,
314 : &rstan::stan_fit<modeldee1452d10_16a540c6086086816528e4524def24d9_namespace::modeldee1452d10_16a540c6086086816528e4524def24d9, boost::random::ecuyer1988>::call_sampler)
315 : .method(“param_names”,
316 : &rstan::stan_fit<modeldee1452d10_16a540c6086086816528e4524def24d9_namespace::modeldee1452d10_16a540c6086086816528e4524def24d9, boost::random::ecuyer1988>::param_names)
317 : .method(“param_names_oi”,
318 : &rstan::stan_fit<modeldee1452d10_16a540c6086086816528e4524def24d9_namespace::modeldee1452d10_16a540c6086086816528e4524def24d9, boost::random::ecuyer1988>::param_names_oi)
319 : .method(“param_fnames_oi”,
320 : &rstan::stan_fit<modeldee1452d10_16a540c6086086816528e4524def24d9_namespace::modeldee1452d10_16a540c6086086816528e4524def24d9, boost::random::ecuyer1988>::param_fnames_oi)
321 : .method(“param_dims”,
322 : &rstan::stan_fit<modeldee1452d10_16a540c6086086816528e4524def24d9_namespace::modeldee1452d10_16a540c6086086816528e4524def24d9, boost::random::ecuyer1988>::param_dims)
323 : .method(“param_dims_oi”,
324 : &rstan::stan_fit<modeldee1452d10_16a540c6086086816528e4524def24d9_namespace::modeldee1452d10_16a540c6086086816528e4524def24d9, boost::random::ecuyer1988>::param_dims_oi)
325 : .method(“update_param_oi”,
326 : &rstan::stan_fit<modeldee1452d10_16a540c6086086816528e4524def24d9_namespace::modeldee1452d10_16a540c6086086816528e4524def24d9, boost::random::ecuyer1988>::update_param_oi)
327 : .method(“param_oi_tidx”,
328 : &rstan::stan_fit<modeldee1452d10_16a540c6086086816528e4524def24d9_namespace::modeldee1452d10_16a540c6086086816528e4524def24d9, boost::random::ecuyer1988>::param_oi_tidx)
329 : .method(“grad_log_prob”,
330 : &rstan::stan_fit<modeldee1452d10_16a540c6086086816528e4524def24d9_namespace::modeldee1452d10_16a540c6086086816528e4524def24d9, boost::random::ecuyer1988>::grad_log_prob)
331 : .method(“log_prob”,
332 : &rstan::stan_fit<modeldee1452d10_16a540c6086086816528e4524def24d9_namespace::modeldee1452d10_16a540c6086086816528e4524def24d9, boost::random::ecuyer1988>::log_prob)
333 : .method(“unconstrain_pars”,
334 : &rstan::stan_fit<modeldee1452d10_16a540c6086086816528e4524def24d9_namespace::modeldee1452d10_16a540c6086086816528e4524def24d9, boost::random::ecuyer1988>::unconstrain_pars)
335 : .method(“constrain_pars”,
336 : &rstan::stan_fit<modeldee1452d10_16a540c6086086816528e4524def24d9_namespace::modeldee1452d10_16a540c6086086816528e4524def24d9, boost::random::ecuyer1988>::constrain_pars)
337 : .method(“num_pars_unconstrained”,
338 : &rstan::stan_fit<modeldee1452d10_16a540c6086086816528e4524def24d9_namespace::modeldee1452d10_16a540c6086086816528e4524def24d9, boost::random::ecuyer1988>::num_pars_unconstrained)
339 : .method(“unconstrained_param_names”,
340 : &rstan::stan_fit<modeldee1452d10_16a540c6086086816528e4524def24d9_namespace::modeldee1452d10_16a540c6086086816528e4524def24d9, boost::random::ecuyer1988>::unconstrained_param_names)
341 : .method(“constrained_param_names”,
342 : &rstan::stan_fit<modeldee1452d10_16a540c6086086816528e4524def24d9_namespace::modeldee1452d10_16a540c6086086816528e4524def24d9, boost::random::ecuyer1988>::constrained_param_names)
343 : .method(“standalone_gqs”,
344 : &rstan::stan_fit<modeldee1452d10_16a540c6086086816528e4524def24d9_namespace::modeldee1452d10_16a540c6086086816528e4524def24d9, boost::random::ecuyer1988>::standalone_gqs)
345 : ;
346 : }
347 :
348 : // declarations
349 : extern “C” {
350 : SEXP filedee454fa6f9( ) ;
351 : }
352 :
353 : // definition
354 :
355 : SEXP filedee454fa6f9( ){
356 : return Rcpp::wrap(“16a540c6086086816528e4524def24d9”);
357 : }
358 :
359 :
Compilation argument:
/Library/Frameworks/R.framework/Resources/bin/R CMD SHLIB filedee454fa6f9.cpp 2> filedee454fa6f9.cpp.err.txt
clang++ -std=gnu++14 -I”/Library/Frameworks/R.framework/Resources/include" -DNDEBUG -I"/Library/Frameworks/R.framework/Versions/3.6/Resources/library/Rcpp/include/" -I"/Library/Frameworks/R.framework/Versions/3.6/Resources/library/RcppEigen/include/" -I"/Library/Frameworks/R.framework/Versions/3.6/Resources/library/RcppEigen/include/unsupported" -I"/Library/Frameworks/R.framework/Versions/3.6/Resources/library/BH/include" -I"/Library/Frameworks/R.framework/Versions/3.6/Resources/library/StanHeaders/include/src/" -I"/Library/Frameworks/R.framework/Versions/3.6/Resources/library/StanHeaders/include/" -I"/Library/Frameworks/R.framework/Versions/3.6/Resources/library/rstan/include" -DEIGEN_NO_DEBUG -DBOOST_DISABLE_ASSERTS -isysroot /Library/Developer/CommandLineTools/SDKs/MacOSX.sdk -I/usr/local/include -fPIC -Wall -g -O2 -c filedee454fa6f9.cpp -o filedee454fa6f9.o
clang++ -std=gnu++14 -dynamiclib -Wl,-headerpad_max_install_names -undefined dynamic_lookup -single_module -multiply_defined suppress -L/Library/Frameworks/R.framework/Resources/lib -L/usr/local/lib -o filedee454fa6f9.so filedee454fa6f9.o -L/Library/Frameworks/R.framework/Versions/3.6/Resources/library/StanHeaders/lib/ -lStanHeaders -F/Library/Frameworks/R.framework/… -framework R -Wl,-framework -Wl,CoreFoundation
In file included from filedee454fa6f9.cpp:8:
In file included from /Library/Frameworks/R.framework/Versions/3.6/Resources/library/StanHeaders/include/src/stan/model/model_header.hpp:4:
In file included from /Library/Frameworks/R.framework/Versions/3.6/Resources/library/StanHeaders/include/stan/math.hpp:4:
In file included from /Library/Frameworks/R.framework/Versions/3.6/Resources/library/StanHeaders/include/stan/math/rev/mat.hpp:4:
In file included from /Library/Frameworks/R.framework/Versions/3.6/Resources/library/StanHeaders/include/stan/math/rev/core.hpp:5:
In file included from /Library/Frameworks/R.framework/Versions/3.6/Resources/library/StanHeaders/include/stan/math/rev/core/build_vari_array.hpp:4:
In file included from /Library/Frameworks/R.framework/Versions/3.6/Resources/library/StanHeaders/include/stan/math/prim/mat/fun/Eigen.hpp:4:
In file included from /Library/Frameworks/R.framework/Versions/3.6/Resources/library/RcppEigen/include/Eigen/Dense:1:
In file included from /Library/Frameworks/R.framework/Versions/3.6/Resources/library/RcppEigen/include/Eigen/Core:535:
/Library/Frameworks/R.framework/Versions/3.6/Resources/library/RcppEigen/include/Eigen/src/Core/util/ReenableStupidWarnings.h:10:30: warning: pragma diagnostic pop could not pop, no matching push [-Wunknown-pragmas]
#pragma clang diagnostic pop
^
In file included from filedee454fa6f9.cpp:8:
stn_mdR> fit ← sampling(mod, data = list(y_mean = 0))
(truncated errors)
SAMPLING FOR MODEL ‘16a540c6086086816528e4524def24d9’ NOW (CHAIN 1).
Chain 1:
Chain 1: Gradient evaluation took 7e-06 seconds
Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.07 seconds.
Chain 1: Adjust your expectations accordingly!
Chain 1:
Chain 1:
Chain 1: Iteration: 1 / 2000 [ 0%] (Warmup)
Chain 1: Iteration: 200 / 2000 [ 10%] (Warmup)
Chain 1: Iteration: 400 / 2000 [ 20%] (Warmup)
Chain 1: Iteration: 600 / 2000 [ 30%] (Warmup)
Chain 1: Iteration: 800 / 2000 [ 40%] (Warmup)
Chain 1: Iteration: 1000 / 2000 [ 50%] (Warmup)
Chain 1: Iteration: 1001 / 2000 [ 50%] (Sampling)
Chain 1: Iteration: 1200 / 2000 [ 60%] (Sampling)
Chain 1: Iteration: 1400 / 2000 [ 70%] (Sampling)
Chain 1: Iteration: 1600 / 2000 [ 80%] (Sampling)
Chain 1: Iteration: 1800 / 2000 [ 90%] (Sampling)
Chain 1: Iteration: 2000 / 2000 [100%] (Sampling)
Chain 1:
Chain 1: Elapsed Time: 0.011142 seconds (Warm-up)
Chain 1: 0.00953 seconds (Sampling)
Chain 1: 0.020672 seconds (Total)
Chain 1:
SAMPLING FOR MODEL ‘16a540c6086086816528e4524def24d9’ NOW (CHAIN 2).
Chain 2:
Chain 2: Gradient evaluation took 2e-06 seconds
Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.02 seconds.
Chain 2: Adjust your expectations accordingly!
Chain 2:
Chain 2:
Chain 2: Iteration: 1 / 2000 [ 0%] (Warmup)
Chain 2: Iteration: 200 / 2000 [ 10%] (Warmup)
Chain 2: Iteration: 400 / 2000 [ 20%] (Warmup)
Chain 2: Iteration: 600 / 2000 [ 30%] (Warmup)
Chain 2: Iteration: 800 / 2000 [ 40%] (Warmup)
Chain 2: Iteration: 1000 / 2000 [ 50%] (Warmup)
Chain 2: Iteration: 1001 / 2000 [ 50%] (Sampling)
Chain 2: Iteration: 1200 / 2000 [ 60%] (Sampling)
Chain 2: Iteration: 1400 / 2000 [ 70%] (Sampling)
Chain 2: Iteration: 1600 / 2000 [ 80%] (Sampling)
Chain 2: Iteration: 1800 / 2000 [ 90%] (Sampling)
Chain 2: Iteration: 2000 / 2000 [100%] (Sampling)
Chain 2:
Chain 2: Elapsed Time: 0.008622 seconds (Warm-up)
Chain 2: 0.01019 seconds (Sampling)
Chain 2: 0.018812 seconds (Total)
Chain 2:
SAMPLING FOR MODEL ‘16a540c6086086816528e4524def24d9’ NOW (CHAIN 3).
Chain 3:
Chain 3: Gradient evaluation took 3e-06 seconds
Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0.03 seconds.
Chain 3: Adjust your expectations accordingly!
Chain 3:
Chain 3:
Chain 3: Iteration: 1 / 2000 [ 0%] (Warmup)
Chain 3: Iteration: 200 / 2000 [ 10%] (Warmup)
Chain 3: Iteration: 400 / 2000 [ 20%] (Warmup)
Chain 3: Iteration: 600 / 2000 [ 30%] (Warmup)
Chain 3: Iteration: 800 / 2000 [ 40%] (Warmup)
Chain 3: Iteration: 1000 / 2000 [ 50%] (Warmup)
Chain 3: Iteration: 1001 / 2000 [ 50%] (Sampling)
Chain 3: Iteration: 1200 / 2000 [ 60%] (Sampling)
Chain 3: Iteration: 1400 / 2000 [ 70%] (Sampling)
Chain 3: Iteration: 1600 / 2000 [ 80%] (Sampling)
Chain 3: Iteration: 1800 / 2000 [ 90%] (Sampling)
Chain 3: Iteration: 2000 / 2000 [100%] (Sampling)
Chain 3:
Chain 3: Elapsed Time: 0.0086 seconds (Warm-up)
Chain 3: 0.007962 seconds (Sampling)
Chain 3: 0.016562 seconds (Total)
Chain 3:
SAMPLING FOR MODEL ‘16a540c6086086816528e4524def24d9’ NOW (CHAIN 4).
Chain 4:
Chain 4: Gradient evaluation took 1e-06 seconds
Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0.01 seconds.
Chain 4: Adjust your expectations accordingly!
Chain 4:
Chain 4:
Chain 4: Iteration: 1 / 2000 [ 0%] (Warmup)
Chain 4: Iteration: 200 / 2000 [ 10%] (Warmup)
Chain 4: Iteration: 400 / 2000 [ 20%] (Warmup)
Chain 4: Iteration: 600 / 2000 [ 30%] (Warmup)
Chain 4: Iteration: 800 / 2000 [ 40%] (Warmup)
Chain 4: Iteration: 1000 / 2000 [ 50%] (Warmup)
Chain 4: Iteration: 1001 / 2000 [ 50%] (Sampling)
Chain 4: Iteration: 1200 / 2000 [ 60%] (Sampling)
Chain 4: Iteration: 1400 / 2000 [ 70%] (Sampling)
Chain 4: Iteration: 1600 / 2000 [ 80%] (Sampling)
Chain 4: Iteration: 1800 / 2000 [ 90%] (Sampling)
Chain 4: Iteration: 2000 / 2000 [100%] (Sampling)
Chain 4:
Chain 4: Elapsed Time: 0.008115 seconds (Warm-up)
Chain 4: 0.008177 seconds (Sampling)
Chain 4: 0.016292 seconds (Total)
Chain 4:
stn_mdR> fit2 ← sampling(mod, data = list(y_mean = 5))
SAMPLING FOR MODEL ‘16a540c6086086816528e4524def24d9’ NOW (CHAIN 1).
Chain 1:
Chain 1: Gradient evaluation took 6e-06 seconds
Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.06 seconds.