Hi Angelo,
thanks for your reply.
This is what I get for my specific use case without specifying anything.
Seem to predict the events for each study???
What I need however would be a distribution of the true proportion of events in a future study. I am imagining an output similar to what I get with: as_draws_df(model, variable = c(“b_Intercept”))
The mean/ median of the distribution would be the same, but it should be wider.
posterior_predict(model)
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 2 1 3 3 0 3 0 9 4 0
[2,] 1 0 7 2 0 3 1 9 11 0
[3,] 0 0 21 0 0 2 0 7 20 4
[4,] 0 0 12 0 0 4 0 14 16 4
[5,] 0 0 12 2 0 0 3 11 15 0
[6,] 4 0 9 4 0 10 0 12 8 1
[7,] 4 0 5 3 0 1 0 10 17 2
[8,] 3 1 8 0 3 1 0 7 13 0
[9,] 2 0 15 4 0 2 0 10 10 3
[10,] 0 1 8 3 0 6 0 9 9 1
[11,] 0 0 6 3 0 2 2 6 14 4
[12,] 4 0 5 0 2 0 0 8 21 1
[13,] 0 2 12 2 1 8 0 11 17 3
[14,] 4 0 14 4 0 1 0 6 13 1
[15,] 1 0 10 2 0 2 2 6 10 1
[16,] 2 1 5 0 0 2 2 12 12 2
[17,] 2 1 7 4 1 1 3 10 14 4
[18,] 2 0 8 4 0 0 1 10 35 6
[19,] 1 0 7 2 0 5 1 5 9 0
[20,] 3 0 9 1 1 4 2 5 19 3
[21,] 2 0 7 1 1 1 0 8 12 0
[22,] 2 0 7 3 2 2 1 7 10 3
[23,] 1 1 15 2 0 1 1 7 13 0
[24,] 3 1 5 5 0 0 1 11 13 0
[25,] 5 0 4 3 0 3 4 7 7 1
[26,] 6 1 13 4 3 1 2 4 8 0
[27,] 3 3 9 5 0 2 2 15 17 10
[28,] 2 1 11 6 3 4 2 15 24 2
[29,] 1 1 8 2 0 5 0 7 10 0
[30,] 2 0 8 2 0 0 2 7 13 1
[31,] 0 0 2 1 2 0 1 7 12 2
[32,] 2 1 8 3 1 0 1 5 14 1
[33,] 3 1 10 6 4 3 1 3 10 2
[34,] 4 0 6 1 0 2 1 1 8 2
[35,] 0 0 6 4 0 2 1 11 7 0
[36,] 1 1 9 1 1 1 1 5 8 2
[37,] 1 1 4 7 0 1 2 8 7 0
[38,] 8 1 5 2 1 3 0 7 11 1
[39,] 0 1 15 3 0 1 1 5 15 8
[40,] 2 0 3 2 0 4 0 4 4 1
[41,] 3 1 7 6 2 2 0 3 11 3
[42,] 0 0 11 0 1 2 3 8 8 2
[43,] 2 0 7 4 1 2 0 4 4 0
[44,] 0 3 10 1 1 3 11 9 18 1
[45,] 2 2 12 4 0 0 0 3 19 6
[46,] 2 1 10 7 0 2 0 8 11 7
[47,] 0 0 10 7 1 1 5 7 11 0
[48,] 0 0 9 1 0 3 0 9 13 2
[49,] 1 1 9 5 0 5 3 8 11 1
[50,] 2 0 11 4 0 4 2 23 11 2
[51,] 1 3 15 1 1 2 2 5 18 1
[52,] 3 0 10 1 1 3 1 6 13 2
[53,] 1 1 5 1 0 1 2 7 17 3
[54,] 2 4 14 0 0 2 0 9 10 3
[55,] 3 0 15 13 1 1 1 5 6 6
[56,] 2 0 9 1 2 3 1 7 14 6
[57,] 5 1 8 3 0 7 2 7 13 3
[58,] 2 0 4 4 1 3 0 2 14 3
[59,] 1 2 9 5 2 3 0 6 15 1
[60,] 4 0 8 3 2 5 1 5 11 1
[61,] 2 0 5 2 1 1 0 8 10 0
[62,] 1 2 14 9 0 2 0 14 20 3
[63,] 2 0 7 4 3 4 2 11 16 2
[64,] 1 0 16 2 3 1 0 6 8 4
[65,] 3 1 8 4 0 4 0 9 9 3
[66,] 6 0 8 3 0 2 2 8 10 2
[67,] 1 0 8 2 0 1 0 8 13 5
[68,] 2 0 18 4 0 3 0 12 14 1
[69,] 3 0 9 1 0 1 0 11 9 7
[70,] 0 1 7 2 0 3 0 10 17 2
[71,] 1 1 11 4 2 4 3 10 6 0
[72,] 0 0 3 4 0 0 0 5 19 0
[73,] 5 0 9 1 1 2 3 11 15 2
[74,] 4 1 3 3 2 5 0 14 17 2
[75,] 3 0 13 4 1 6 1 17 13 2
[76,] 4 1 5 4 0 4 5 5 20 1
[77,] 2 2 10 5 2 5 1 7 2 4
[78,] 2 0 6 1 0 2 2 13 5 0
[79,] 2 1 10 5 3 2 5 8 2 5
[80,] 2 0 12 4 2 5 3 6 17 4
[81,] 3 5 8 2 1 3 0 8 3 1
[82,] 1 0 1 4 1 0 1 6 10 0
[83,] 2 0 9 6 0 6 1 6 6 4
[84,] 3 2 3 3 0 0 0 10 16 1
[85,] 1 0 20 3 0 1 0 7 7 0
[86,] 1 0 6 4 1 0 2 6 13 1
[87,] 2 0 8 7 1 2 4 10 14 2
[88,] 1 1 5 0 0 5 4 11 11 2
[89,] 2 0 7 6 0 1 0 6 7 0
[90,] 1 1 11 0 4 1 0 12 18 5
[91,] 3 1 6 0 1 0 0 5 16 5
[92,] 2 1 12 2 0 1 2 6 27 0
[93,] 2 0 14 8 2 3 0 17 16 2
[94,] 2 0 8 5 0 4 1 14 5 1
[95,] 1 1 8 2 0 3 1 10 11 0
[96,] 3 0 7 4 0 0 0 11 16 3
[97,] 5 0 9 4 1 3 0 6 7 0
[98,] 2 0 11 3 1 0 0 5 6 1
[99,] 2 0 8 3 0 5 1 14 19 1
[100,] 0 4 15 4 0 0 3 2 12 2
[ reached getOption(“max.print”) – omitted 3900 rows ]