I am running a Wiener diffusion model using default priors in brms using the cmdstanr backend to improve runtime. Everything looks great except that Bulk_ESS is higher than the posterior draws. For the model parameters it is even (slightly) higher than the actual number of all draws (8000)
Family: wiener
Links: mu = identity; bs = identity; ndt = identity; bias = identity
Formula: RT1 | dec(cor) ~ cong + time + Raven_Score_c + concept_sum_c + Group + cong:time + cong:Raven_Score_c + cong:concept_sum_c + cong:Group + time:Raven_Score_c + time:concept_sum_c + time:Group + Raven_Score_c:concept_sum_c + Raven_Score_c:Group + (1 | ID) + (1 | subtopic)
Data: Wiener2 (Number of observations: 10577)
Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup draws = 4000
Multilevel Hyperparameters:
~ID (Number of levels: 102)
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
sd(Intercept) 0.05 0.01 0.03 0.06 1.00 1956 2695
~subtopic (Number of levels: 14)
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
sd(Intercept) 0.11 0.03 0.07 0.17 1.00 933 2149
Regression Coefficients:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
Intercept 0.48 0.03 0.41 0.54 1.00 952 1555
congincongruent -0.36 0.02 -0.39 -0.33 1.00 4841 3194
timepre -0.13 0.02 -0.16 -0.10 1.00 4427 3104
Raven_Score_c 0.01 0.00 0.01 0.02 1.00 4842 3513
concept_sum_c 0.00 0.00 -0.00 0.01 1.00 4793 3643
GroupTwin -0.05 0.02 -0.10 -0.01 1.00 3472 3072
congincongruent:timepre 0.02 0.02 -0.02 0.05 1.00 5229 3383
congincongruent:Raven_Score_c -0.00 0.00 -0.01 -0.00 1.00 4930 3374
congincongruent:concept_sum_c -0.00 0.00 -0.01 0.00 1.00 5750 3327
congincongruent:GroupTwin 0.04 0.02 -0.00 0.08 1.00 5605 3159
timepre:Raven_Score_c -0.01 0.00 -0.01 -0.00 1.00 5631 3463
timepre:concept_sum_c 0.00 0.00 -0.00 0.01 1.00 6049 3310
timepre:GroupTwin 0.03 0.02 -0.01 0.07 1.00 5242 2900
Raven_Score_c:concept_sum_c -0.00 0.00 -0.00 0.00 1.00 4304 3504
Raven_Score_c:GroupTwin -0.00 0.00 -0.01 0.00 1.00 3892 3549
Further Distributional Parameters:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
bs 4.71 0.02 4.67 4.76 1.00 8193 3077
ndt 0.79 0.01 0.77 0.81 1.00 7627 3318
bias 0.48 0.00 0.47 0.49 1.00 8290 2913
Draws were sampled using sample(hmc). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).
Maybe this is not an issue, but I wanted to check with someone with more expertise. Any idea what to investigate?
I checked the posterior predictive check, where the estimated curves are a bit lower than the curve of the data, indicating that the uninformative default priors still have an influence. However I am not sure what could affect the Bulk_ESS draws