As suggested here and elsewhere the model:
glm(y~x, family=binomial(link=identity))
gives estimates in risk difference
.
I would like to know if the same model in brms
, or specifically the model:
mod<-brm(r | trials(n) ~ treat, data=dt, family=binomial(link=identity))
for the data below would also output estimates in risk difference
:
dt = read.table(header = TRUE, text = "
n r r/n group treat c2 c1 w
62 3 0.048387097 1 0 0.1438 1.941115288 1.941115288
96 1 0.010416667 1 0 0.237 1.186583128 1.186583128
17 0 0 0 0 0.2774 1.159882668 3.159882668
41 2 0.048780488 1 0 0.2774 1.159882668 3.159882668
212 170 0.801886792 0 0 0.2093 1.133397521 1.133397521
143 21 0.146853147 1 1 0.1206 1.128993008 1.128993008
143 0 0 1 1 0.1707 1.128993008 2.128993008
143 33 0.230769231 0 1 0.0699 1.128993008 1.128993008
73 62 1.260273973 0 1 0.1351 1.121927228 1.121927228
73 17 0.232876712 0 1 0.1206 1.121927228 1.121927228")
I read here that:
“In the following, we list all possible links for each family. (…) The (…) families
binomial
,bernoulli
,Beta
,zero_inflated_binomial
,zero_inflated_beta
, andzero_one_inflated_beta
the linkslogit
,probit
,probit_approx
,cloglog
,cauchit
, andidentity
”.
I hope what I am proposing is possible in bmrs
. Thank you in advance for any help.