Bind_draws error with cmdstanr

Hi!

I’ve installed cmdstanr, using the instructions here https://mc-stan.org/cmdstanr/articles/cmdstanr.html, and re-installed posterior, via

remotes::install_github("jgabry/posterior")

to make sure it was up to date. The version on my machine still say 0.0.1.

When I run the bernoulli example, I get the following ouput


Running ./bernoulli 'id=1' random 'seed=123' data \
  'file=/var/folders/ty/36ws994x4l33ksszcdwjtrv40000gp/T/RtmpfykOGe/standata-244777bd4adc.dat' \
  output \
  'file=/var/folders/ty/36ws994x4l33ksszcdwjtrv40000gp/T/RtmpfykOGe/bernoulli-202003031059-1-7deeee.csv' \
  'method=sample' 'save_warmup=0' 'algorithm=hmc' \
  'engine=nuts' adapt 'engaged=1'
Running ./bernoulli 'id=2' random 'seed=124' data \
  'file=/var/folders/ty/36ws994x4l33ksszcdwjtrv40000gp/T/RtmpfykOGe/standata-244777bd4adc.dat' \
  output \
  'file=/var/folders/ty/36ws994x4l33ksszcdwjtrv40000gp/T/RtmpfykOGe/bernoulli-202003031059-2-7deeee.csv' \
  'method=sample' 'save_warmup=0' 'algorithm=hmc' \
  'engine=nuts' adapt 'engaged=1'
Chain 1 Iteration:    1 / 2000 [  0%]  (Warmup) 
Chain 1 Iteration:  100 / 2000 [  5%]  (Warmup) 
Chain 1 Iteration:  200 / 2000 [ 10%]  (Warmup) 
Chain 1 Iteration:  300 / 2000 [ 15%]  (Warmup) 
Chain 1 Iteration:  400 / 2000 [ 20%]  (Warmup) 
Chain 1 Iteration:  500 / 2000 [ 25%]  (Warmup) 
Chain 1 Iteration:  600 / 2000 [ 30%]  (Warmup) 
Chain 1 Iteration:  700 / 2000 [ 35%]  (Warmup) 
Chain 1 Iteration:  800 / 2000 [ 40%]  (Warmup) 
Chain 1 Iteration:  900 / 2000 [ 45%]  (Warmup) 
Chain 1 Iteration: 1000 / 2000 [ 50%]  (Warmup) 
Chain 1 Iteration: 1001 / 2000 [ 50%]  (Sampling) 
Chain 1 Iteration: 1100 / 2000 [ 55%]  (Sampling) 
Chain 1 Iteration: 1200 / 2000 [ 60%]  (Sampling) 
Chain 1 Iteration: 1300 / 2000 [ 65%]  (Sampling) 
Chain 1 Iteration: 1400 / 2000 [ 70%]  (Sampling) 
Chain 1 Iteration: 1500 / 2000 [ 75%]  (Sampling) 
Chain 1 Iteration: 1600 / 2000 [ 80%]  (Sampling) 
Chain 1 Iteration: 1700 / 2000 [ 85%]  (Sampling) 
Chain 1 Iteration: 1800 / 2000 [ 90%]  (Sampling) 
Chain 1 Iteration: 1900 / 2000 [ 95%]  (Sampling) 
Chain 1 Iteration: 2000 / 2000 [100%]  (Sampling) 
Chain 2 Iteration:    1 / 2000 [  0%]  (Warmup) 
Chain 2 Iteration:  100 / 2000 [  5%]  (Warmup) 
Chain 2 Iteration:  200 / 2000 [ 10%]  (Warmup) 
Chain 2 Iteration:  300 / 2000 [ 15%]  (Warmup) 
Chain 2 Iteration:  400 / 2000 [ 20%]  (Warmup) 
Chain 2 Iteration:  500 / 2000 [ 25%]  (Warmup) 
Chain 2 Iteration:  600 / 2000 [ 30%]  (Warmup) 
Chain 2 Iteration:  700 / 2000 [ 35%]  (Warmup) 
Chain 2 Iteration:  800 / 2000 [ 40%]  (Warmup) 
Chain 2 Iteration:  900 / 2000 [ 45%]  (Warmup) 
Chain 2 Iteration: 1000 / 2000 [ 50%]  (Warmup) 
Chain 2 Iteration: 1001 / 2000 [ 50%]  (Sampling) 
Chain 2 Iteration: 1100 / 2000 [ 55%]  (Sampling) 
Chain 2 Iteration: 1200 / 2000 [ 60%]  (Sampling) 
Chain 2 Iteration: 1300 / 2000 [ 65%]  (Sampling) 
Chain 2 Iteration: 1400 / 2000 [ 70%]  (Sampling) 
Chain 2 Iteration: 1500 / 2000 [ 75%]  (Sampling) 
Chain 2 Iteration: 1600 / 2000 [ 80%]  (Sampling) 
Chain 2 Iteration: 1700 / 2000 [ 85%]  (Sampling) 
Chain 2 Iteration: 1800 / 2000 [ 90%]  (Sampling) 
Chain 2 Iteration: 1900 / 2000 [ 95%]  (Sampling) 
Chain 2 Iteration: 2000 / 2000 [100%]  (Sampling) 
Chain 1 finished in 0.2 seconds.
Chain 2 finished in 0.1 seconds.

Both chains finished succesfully.
Mean chain execution time: 0.1 seconds.
Total execution time: 0.2 seconds.
Error: 'bind_draws' is not an exported object from 'namespace:posterior'

with emphasize on

Error: 'bind_draws' is not an exported object from 'namespace:posterior'

The fit object is not created.

If I run

? bind_draws

I do get a help window from the posterior package. However, there is no autocomplete when trying to type

posterior:bind_draws

Any help is greatly appreciated!

1 Like

Uninstalled posterior and cmdstanr, and reinstalled both with

devtools::install_github("stan-dev/cmdstanr")

and got the example to work.

I’m guessing my version of posterior was outdated. I do recommend changing the version number.

p.s: excited to start using cmdstanr, it looks great!

2 Likes