Advice on priorsense and splines

I am running a model in brms with a couple of smooth terms. I thought it would be interesting to use the priorsense package. It is finding several prior-data conflicts for the various smooth terms used in brms. Changing the sds priors seems to not help; indeed, I cannot find any combination of priors that doesn’t result in several prior-data conflicts. However, if I replace the smooths with cubic terms, the prior-data conflicts disappear (but the fits to the data are less convincing). I am curious to know if prior-data conflicts reported by priorsense are not actually problematic for smooth terms due to there being some form of combined/joint information being shared between the various terms.

Tagging some of the authors of priorsense … @topipa, @paul.buerkner, @avehtari

I have no experience with using priorsense with smooth terms yet. Do you have a reproducible example that demonstrates the behavior?

Have you looked at the GP example in [2107.14054] Detecting and diagnosing prior and likelihood sensitivity with power-scaling (updated 19 Dec 2022)? That GP implementation is practically the same as the spline implementation, so the advice there holds for splines, too.

That’s very informative and probably corresponds to what I am seeing in my model – thank you for the pointer. I will investigate further by focussing on the sensitivity of the predictions.

1 Like