Model stacking and LOO (brms models)

I understand my error now. In my head I was thinking that a weight of .60 to .70 felt like much stronger support for a model than a 1 SE LOO difference. I now see that this conceptualization is incorrect.

This is super helpful. I understand now.

I only set priors on regression intercepts and and coefficients (both N(0,5)). I scaled my regression inputs by 2 sd’s (to facilitate comparisons between the coefficients since x1 is dichotomous and x2 is continuous). For my 5 outcome measures, they are logit transformed probabilities (doing multivariate beta regression isn’t possible or I would have done it) that haven’t otherwise been transformed. I have a sample size of 4,524.

Here’s the loo output for model 5:

Computed from 4000 by 4524 log-likelihood matrix

         Estimate    SE
elpd_loo -13563.7 187.1
p_loo        45.2   2.0
looic     27127.4 374.3
------
Monte Carlo SE of elpd_loo is 0.1.

All Pareto k estimates are good (k < 0.5).
See help('pareto-k-diagnostic') for details.