I want to explain about my new Bayesian model

Thank you for reply.

For the following data,

Confidence number of Hits (TP) number of False alarms (FP)
3 = definitely present H_{3} F_{3}
2 = probably present H_{2} F_{2}
1 = questionable H_{1} F_{1}

where, H_{c},F_c \in \mathbb{N}. Number of images N_I . Number of lesions N_L.

the likelihood function is defined to be

f(H_1,H_2,H_3,F_1,F_2,F_3;N_I,N_L|\theta) = \dbinom{N_L}{H_3}p_3(\theta)^{H_3}(1-p_3(\theta))^{N_L-H_3}
\times \dbinom{N_L-H_3}{H_2}p_3(\theta)^{H_2}(1-p_3(\theta))^{N_L-H_3-H_2}
\times \dbinom{N_L-H_3-H_2}{H_1}p_3(\theta)^{H_1}(1-p_3(\theta))^{N_L-H_3-H_2-H_1}
\times \frac{q_3(\theta)^{F_3} } {F_3!}\exp(-F_3)
\times \frac{q_2(\theta)^{F_2} } {F_3!}\exp(-F_2)
\times \frac{q_1(\theta)^{F_1} } {F_1!}\exp(-F_1).

In particular, if F_2=F_3=0, then

f(H_1,H_2,H_3,F_1,F_2,F_3;N_I,N_L|\theta) = \dbinom{N_L}{H_3}p_3(\theta)^{H_3}(1-p_3(\theta))^{N_L-H_3}
\times \dbinom{N_L-H_3}{H_2}p_3(\theta)^{H_2}(1-p_3(\theta))^{N_L-H_3-H_2}
\times \dbinom{N_L-H_3-H_2}{H_1}p_3(\theta)^{H_1}(1-p_3(\theta))^{N_L-H_3-H_2-H_1}
\times \frac{q_3(\theta)^{0} } {0!}\exp(-0)
\times \frac{q_2(\theta)^{0} } {0!}\exp(-0)
\times \frac{q_1(\theta)^{F_1} } {F_1!}\exp(-F_1).

and thus I guess the likelihood is well defined.

I never even thought of that actually, thank you.